Solveeit Logo

Question

Question: In a triangle, \[ABC\] , if \[\sum {\sin 3A} = 0\] , then it is. \( \left( A \right)Equilatera...

In a triangle, ABCABC , if sin3A=0\sum {\sin 3A} = 0 , then it is.
(A)Equilateral (B)Right angled (C)Isosceles (D)Has at least one angle 60  \left( A \right)Equilateral \\\ \left( B \right)Right{\text{ }}angled \\\ \left( C \right)Isosceles \\\ \left( D \right)Has{\text{ }}at{\text{ }}least{\text{ }}one{\text{ }}angle{\text{ }}{60^ \circ } \\\

Explanation

Solution

Hint : In the triangle ABCABC , it is given that sin3A=0\sum {\sin 3A} = 0
Which means that, sin3A+sin3B+sin3C=0\sin 3A + \sin 3B + \sin 3C = 0
Now in order to state that which type of triangle it is, we need to simplify the expression, which can be done by using the formula for sinA+sinB+sinC=0\sin A + \sin B + \sin C = 0
i.e. sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)\sin A + \sin B + \sin C = 4cos\left( {A/2} \right)cos\left( {B/2} \right)cos\left( {C/2} \right)

Complete step-by-step answer :
First of all, we need to simplify the relation that is given, sin3A=0\sum {\sin 3A} = 0
sin3A=0 sin3A+sin3B+sin3C=0   \sum {\sin 3A} = 0 \\\ \sin 3A + \sin 3B + \sin 3C = 0 \;
Using the formula,
sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)\sin A + \sin B + \sin C = 4cos\left( {A/2} \right)cos\left( {B/2} \right)cos\left( {C/2} \right)
In the above equation, we get,
4cos(A2)cos(B2)cos(C2)=0 cos(3A2)cos(3B2)cos(3C2)=0 cos(3A2)=0 or cos(3B2)=0 or cos(3C2)=0   \Rightarrow 4\cos \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{B}{2}} \right)cos\left( {\dfrac{C}{2}} \right) = 0 \\\ \Rightarrow \cos \left( {\dfrac{{3A}}{2}} \right)\cos \left( {\dfrac{{3B}}{2}} \right)cos\left( {\dfrac{{3C}}{2}} \right) = 0 \\\ \Rightarrow cos\left( {\dfrac{{3A}}{2}} \right) = 0 \\\ or \\\ cos\left( {\dfrac{{3B}}{2}} \right) = 0 \\\ or \\\ cos\left( {\dfrac{{3C}}{2}} \right) = 0 \;
Taking
cos(3A2)=0 cos(3A2)=cos(π2) (3A2)=(π2) A=π3   cos\left( {\dfrac{{3A}}{2}} \right) = 0 \\\ \Rightarrow cos\left( {\dfrac{{3A}}{2}} \right) = cos\left( {\dfrac{\pi }{2}} \right) \\\ \Rightarrow \left( {\dfrac{{3A}}{2}} \right) = \left( {\dfrac{\pi }{2}} \right) \\\ \Rightarrow A = \dfrac{\pi }{3} \;

Now if,
cos(3B2)=0 cos(3B2)=cos(π2) (3B2)=(π2) B=π3   cos\left( {\dfrac{{3B}}{2}} \right) = 0 \\\ \Rightarrow cos\left( {\dfrac{{3B}}{2}} \right) = cos\left( {\dfrac{\pi }{2}} \right) \\\ \Rightarrow \left( {\dfrac{{3B}}{2}} \right) = \left( {\dfrac{\pi }{2}} \right) \\\ \Rightarrow B = \dfrac{\pi }{3} \;
Similarly,
cos(3C2)=0 cos(3C2)=cos(π2) (3C2)=(π2) C=π3   cos\left( {\dfrac{{3C}}{2}} \right) = 0 \\\ \Rightarrow cos\left( {\dfrac{{3C}}{2}} \right) = cos\left( {\dfrac{\pi }{2}} \right) \\\ \Rightarrow \left( {\dfrac{{3C}}{2}} \right) = \left( {\dfrac{\pi }{2}} \right) \\\ \Rightarrow C = \dfrac{\pi }{3} \;
So, we can observe here that either AA , BB or CC .
Therefore, we have at least one angle in the triangle ABCABC ,that equals 60{60^ \circ } .
This answer matches the option (D)Has at least one angle 60\left( D \right)Has{\text{ }}at{\text{ }}least{\text{ }}one{\text{ }}angle{\text{ }}{60^ \circ }
However, we cannot say with surety that more than one angle will be equal to 60{60^ \circ } only, it might be or might not be. So, we can’t say there will be two angles equal to 60{60^ \circ } making it an isosceles triangle or three equal angles making it an equivalent angle. Also, from the given expression, it can’t be proved that any one angle is a right angle.
So, the only option that can be correct is (D)
So, the correct answer is “Option D”.

Note : The formula for sine functions addition, i.e. sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)\sin A + \sin B + \sin C = 4cos\left( {A/2} \right)cos\left( {B/2} \right)cos\left( {C/2} \right)
And cosπ2=0\cos \dfrac{\pi }{2} = 0 has also been used.
In the step,
cos(3A2)=0 cos(3A2)=cos(π2)   cos\left( {\dfrac{{3A}}{2}} \right) = 0 \\\ \Rightarrow cos\left( {\dfrac{{3A}}{2}} \right) = cos\left( {\dfrac{\pi }{2}} \right) \;
Here we haven’t taken (2n+1)π2\left( {2n + 1} \right)\dfrac{\pi }{2} , because all the angles are acute and, so the value of nn will always remain zero, and thus, we can directly write,
(3C2)=(π2)\left( {\dfrac{{3C}}{2}} \right) = \left( {\dfrac{\pi }{2}} \right)
Any of the three angles can be equal to 60{60^ \circ } , so we can say that at least one of the angles is equal to 60{60^ \circ } .