Solveeit Logo

Question

Question: In a triangle ABC, if <img src="https://cdn.pureessence.tech/canvas_71.png?top_left_x=0&top_left_y=0...

In a triangle ABC, if + 1b+c\frac { 1 } { b + c } = 3a+b+c\frac { 3 } { a + b + c } then C is

equal to –

A

300

B

600

C

750

D

900

Answer

600

Explanation

Solution

The given relation can be written as

a+b+2c(a+c)(b+c)\frac { a + b + 2 c } { ( a + c ) ( b + c ) } = 3a+b+c\frac { 3 } { a + b + c }

⇒ (a + b + 2c) (a + b + c) = 3(a + c) (b + c)

⇒ (a + b)2 + 3c(a + b) + 2c2 = 3(ab + ac + bc+ c2)

⇒ a2 + b2 – c2 = ab

∴ cos C = a2+b2c22ab\frac { \mathrm { a } ^ { 2 } + \mathrm { b } ^ { 2 } - \mathrm { c } ^ { 2 } } { 2 \mathrm { ab } }

= = 12\frac { 1 } { 2 }

⇒ C = 600.