Solveeit Logo

Question

Question: In a triangle \(ABC\), if \(\cot A:\cot B:\cot C = 30:19:6\), then the sides \(a, b, c\) are in: \...

In a triangle ABCABC, if cotA:cotB:cotC=30:19:6\cot A:\cot B:\cot C = 30:19:6, then the sides a,b,ca, b, c are in:
(A) \left( {\text{A}} \right){\text{ }} In A.P.
(B) \left( {\text{B}} \right){\text{ }} In G.P.
(C) \left( {\text{C}} \right){\text{ }} In H.P.
(D) \left( {\text{D}} \right){\text{ }} None of these

Explanation

Solution

To solve this question we need to use the formula and then split it to find the value of a,b,ca,b,c.
Then we have to apply a condition to check if the solution is correct are not.
Next we must observe the series which we get and mention the series which it is representing.
Finally we get the required answer.

Formula used: cotA=b2+c2a24Δ\cot A = \dfrac{{b_{}^2 + c_{}^2 - a_{}^2}}{{4\Delta }},cotB=c2+a2b24Δ\cot B = \dfrac{{c_{}^2 + a_{}^2 - b_{}^2}}{{4\Delta }} and cotC=b2+a2c24Δ\cot C = \dfrac{{b_{}^2 + a_{}^2 - c_{}^2}}{{4\Delta }}.

Complete step-by-step answer:
It is given in the question cotA:cotB:cotC=30:19:6\cot A:\cot B:\cot C = 30:19:6,
Now by applying the above formula of cotA,cotB,cotC\cot A,\cot B,\cot C in the given equation we get-
b2+c2a24Δ:c2+a2b24Δ:b2+a2c24Δ=30:19:6\dfrac{{b_{}^2 + c_{}^2 - a_{}^2}}{{4\Delta }}:\dfrac{{c_{}^2 + a_{}^2 - b_{}^2}}{{4\Delta }}:\dfrac{{b_{}^2 + a_{}^2 - c_{}^2}}{{4\Delta }} = 30:19:6
Now by breaking the above equation we get-
\Rightarrow b2+c2a24Δ=30....(1)\dfrac{{b_{}^2 + {c^2} - a_{}^2}}{{4\Delta }} = 30....\left( 1 \right)
\Rightarrow c2+a2b24Δ=19....(2)\dfrac{{c_{}^2 + a_{}^2 - b_{}^2}}{{4\Delta }} = 19....\left( 2 \right)
\Rightarrow b2+a2c24Δ=6....(3)\dfrac{{b_{}^2 + a_{}^2 - c_{}^2}}{{4\Delta }} = 6....\left( 3 \right)
Now from equation (1)\left( 1 \right) we get-
\Rightarrow b2+c2a2=30(4Δ)=30k2....(4)b_{}^2 + c_{}^2 - a_{}^2 = 30(4\Delta ) = 30k_{}^2....\left( 4 \right), where k2k_{}^2 is a constant
Now from equation (2)\left( 2 \right) we get-
\Rightarrow c2+a2b2=19(4Δ)=19k2....(5)c_{}^2 + a_{}^2 - b_{}^2 = 19(4\Delta ) = 19k_{}^2....\left( 5 \right), where k2k_{}^2 is a constant
Now from equation (3)\left( 3 \right) we get-
\Rightarrow b2+a2c2=6(4Δ)=6k2....(6)b_{}^2 + a_{}^2 - c_{}^2 = 6(4\Delta ) = 6k_{}^2....\left( 6 \right), where k2k_{}^2 is a constant
Now, by adding equation(4)\left( 4 \right) ,(5)\left( 5 \right) and (6)\left( 6 \right) we get-
\Rightarrow b2+c2a2+c2+a2b2+b2+a2c2=30k2+19k2+6k2b_{}^2 + c_{}^2 - a_{}^2 + c_{}^2 + a_{}^2 - b_{}^2 + b_{}^2 + a_{}^2 - c_{}^2 = 30k_{}^2 + 19k_{}^2 + 6k_{}^2
So we can write-
\Rightarrow a2+b2+c2=55k2....(7)a_{}^2 + b_{}^2 + c_{}^2 = 55k_{}^2....\left( 7 \right)
Now by subtracting equation (4)\left( 4 \right) from equation (7)\left( 7 \right) we get-
a2+b2+c2b2c2+a2=55k230k2a_{}^2 + b_{}^2 + c_{}^2 - b_{}^2 - c_{}^2 + a_{}^2 = 55k_{}^2 - 30k_{}^2
On some simplification we get,
\Rightarrow 2a2=25k22a_{}^2 = 25k_{}^2
Now by division we get-
\Rightarrow a2=25k22a_{}^2 = \dfrac{{25k_{}^2}}{2}
By applying square root we get-
\Rightarrow a=25k22=5k2a = \sqrt {\dfrac{{25k_{}^2}}{2}} = \dfrac{{5k}}{{\sqrt 2 }}
Again by subtracting equation (5)\left( 5 \right) from equation (7)\left( 7 \right) we get-
\Rightarrow a2+b2+c2c2a2+b2=55k219k2a_{}^2 + b_{}^2 + c_{}^2 - c_{}^2 - a_{}^2 + b_{}^2 = 55k_{}^2 - 19k_{}^2
On some simplification we get,
\Rightarrow 2b2=36k22b_{}^2 = 36k_{}^2
Now by division we get-
\Rightarrow b2=36k22b_{}^2 = \dfrac{{36k_{}^2}}{2}
By doing square root we get-
\Rightarrow b=36k22=6k2b_{}^{} = \sqrt {\dfrac{{36k_{}^2}}{2}} = \dfrac{{6k}}{{\sqrt 2 }}
Again by subtracting equation (6)\left( 6 \right) from (7)\left( 7 \right) we get-
\Rightarrow a2+b2+c2b2a2+c2=55k26k2a_{}^2 + b_{}^2 + c_{}^2 - b_{}^2 - a_{}^2 + c_{}^2 = 55k_{}^2 - 6k_{}^2
On some simplification we get,
\Rightarrow c2=49k22c_{}^2 = \dfrac{{49k_{}^2}}{2}
Now by doing squaring both side we get-
\Rightarrow c=7k2c = \dfrac{{7k}}{{\sqrt 2 }}
Therefore the value of a=5k2a = \dfrac{{5k}}{{\sqrt 2 }}
The value of b=6k2b = \dfrac{{6k}}{{\sqrt 2 }}
The value of c=7k2c = \dfrac{{7k}}{{\sqrt 2 }}
From the above values, it can be said that the sides a,b,ca, b, c are in A.P as it satisfies the condition 2b=a+c2b = a + c.

Option A is the correct answer.

Note: In order to check whether the progression is in A.P. or not we have to apply the formula 2b=a+c2b = a + c where the twice of the middle term will be equal to the addition of the first and last term and if the condition is satisfied then the numbers are in A.P.
Verification:
Substitute the value in the condition 2b=a+c2b = a + c and we get,
2(6k2)=5k2+7k22\left( {\dfrac{{6k}}{{\sqrt 2 }}} \right) = \dfrac{{5k}}{{\sqrt 2 }} + \dfrac{{7k}}{{\sqrt 2 }}
On multiply the RHS and add the terms as LHS we get,
12k2=12k2\dfrac{{12k}}{{\sqrt 2 }} = \dfrac{{12k}}{{\sqrt 2 }}
Hence satisfies the condition that the sides a,b,ca, b, care in A.P.