Solveeit Logo

Question

Question: In a triangle ABC, if $\cos^2 A - \sin^2 B + \cos^2 C=0$, then the value of $\cos A \cos B \cos C$ i...

In a triangle ABC, if cos2Asin2B+cos2C=0\cos^2 A - \sin^2 B + \cos^2 C=0, then the value of cosAcosBcosC\cos A \cos B \cos C is

A

14\frac{1}{4}

B

1

C

π2\frac{\pi}{2}

D

12\frac{1}{2}

E

0

Answer

0

Explanation

Solution

We are given the triangle ABCABC with

cos2Asin2B+cos2C=0.\cos^2 A - \sin^2 B + \cos^2 C = 0.

Rewrite sin2B\sin^2 B as:

sin2B=1cos2B.\sin^2 B = 1 - \cos^2 B.

Substitute:

cos2A(1cos2B)+cos2C=0    cos2A+cos2B+cos2C1=0.\cos^2 A - (1 - \cos^2 B) + \cos^2 C = 0 \implies \cos^2 A + \cos^2 B + \cos^2 C - 1 = 0.

Thus,

cos2A+cos2B+cos2C=1.(1)\cos^2 A + \cos^2 B + \cos^2 C = 1. \tag{1}

A known trigonometric identity for a triangle is:

cos2A+cos2B+cos2C+2cosAcosBcosC=1.(2)\cos^2 A + \cos^2 B + \cos^2 C + 2 \cos A \cos B \cos C = 1. \tag{2}

Comparing (1)(1) and (2)(2):

1+2cosAcosBcosC=1    2cosAcosBcosC=0.1 + 2 \cos A \cos B \cos C = 1 \implies 2 \cos A \cos B \cos C = 0.

Thus,

cosAcosBcosC=0.\cos A \cos B \cos C = 0.