Question
Question: In a triangle ABC, if $\cos^2 A - \sin^2 B + \cos^2 C=0$, then the value of $\cos A \cos B \cos C$ i...
In a triangle ABC, if cos2A−sin2B+cos2C=0, then the value of cosAcosBcosC is

A
41
B
1
C
2π
D
21
E
0
Answer
0
Explanation
Solution
We are given the triangle ABC with
cos2A−sin2B+cos2C=0.Rewrite sin2B as:
sin2B=1−cos2B.Substitute:
cos2A−(1−cos2B)+cos2C=0⟹cos2A+cos2B+cos2C−1=0.Thus,
cos2A+cos2B+cos2C=1.(1)A known trigonometric identity for a triangle is:
cos2A+cos2B+cos2C+2cosAcosBcosC=1.(2)Comparing (1) and (2):
1+2cosAcosBcosC=1⟹2cosAcosBcosC=0.Thus,
cosAcosBcosC=0.