Solveeit Logo

Question

Question: In a triangle ABC, if cos A + 2cos B + cos C = 2, then a, b, c are in –...

In a triangle ABC, if cos A + 2cos B + cos C = 2, then a, b, c

are in –

A

A. P.

B

G. P.

C

H. P.

D

None of these

Answer

A. P.

Explanation

Solution

cos A + 2cos B + cos C = 2

̃ cos A + cos C = 4 sin2

̃ 2cos (A+C2)\left( \frac { \mathrm { A } + \mathrm { C } } { 2 } \right) cos = 4 sin2 (B2)\left( \frac { B } { 2 } \right)

̃ cos = 2cos (A+C2)\left( \frac { \mathrm { A } + \mathrm { C } } { 2 } \right)

[cos(A+C2)=sin(B2)]\left[ \because \cos \left( \frac { \mathrm { A } + \mathrm { C } } { 2 } \right) = \sin \left( \frac { \mathrm { B } } { 2 } \right) \right]

̃ cot A/2 cot C/2 = 3

s(sa)(sb)(sc)\sqrt { \frac { s ( s - a ) } { ( s - b ) ( s - c ) } } × s(sc)(sa)(sb)\sqrt { \frac { s ( s - c ) } { ( s - a ) ( s - b ) } } = 3

̃ s = 3(s – b) ̃ 2s = 3b ̃ a + c = 2b

̃ a, b, c are in A.P.