Solveeit Logo

Question

Mathematics Question on Trigonometry

In a triangle ABC,if cos2Asin2B+cos2C=0cos^{2}A-sin^{2}B+cos^{2}C=0 ,then the value of cosAcosBcosCcosAcosBcosC is

A

14\dfrac{1}{4}

B

11

C

π2\dfrac{\pi}{2}

D

12\dfrac{1}{2}

E

00

Answer

00

Explanation

Solution

_Given that _

In a triangle ABC,

cos2Asin2B+cos2C=0cos^{2}A-sin^{2}B+cos^{2}C=0-----------(1)

then the value of cosA.cosB.cosCcosA.cosB.cosC is to be determine

[Here , A , B , C are the angles of triangle ABC]

Case 1

Take, A=B=C=60°A=B=C = 60°

Then , test it with equation (1)

We find ,

cos2(60°)sin2(60°)+cos2(60°)cos^{2}(60°)-sin^{2}(60°)+cos^{2}(60°)

1432+140⇒\dfrac{1}{4}-\dfrac{3}{2}+\dfrac{1}{4} ≠ 0

hence the triangle is not an equilateral triangle.

Now take,

_ Case-2_

Take, B=90°B =90°

then , as we know

in a triangle A+B+C=180°A+B+C=180°

C=180°90°A⇒C=180°-90°-A

C=90°A⇒C=90°-A

And cos(90°A)=sinAcos(90°-A)=sinA

Now, we can apply it in equation 1 to test as it satisfy the same or not

cos2(A)sin2(90°)+cos2(C)cos^{2}(A)-sin^{2}(90°)+cos^{2}(C)

=cos2(A)sin2(90°)+sin2(A)=cos^{2}(A)-sin^{2}(90°)+sin^{2}(A)

=cos2(A)+sin2(A)sin2(90°)=cos^{2}(A)+sin^{2}(A)-sin^{2}(90°)

=0 (→ Satisfies the condition)

hence the triangle is not an isosceles triangle.

So,

cosA.cosB.cosCcosA.cosB.cosC

=cosA.cos(90°).cosC=cosA.cos(90°).cosC

=00 (_Ans)