Question
Mathematics Question on Determinants
In a triangle ABC if 1 1 1acbbac=0, then sin2A+sin2B+sin2C=
A
−94
B
49
C
33
D
1
Answer
49
Explanation
Solution
We have 1 1 1acbbac=0,
⇒(c2−ba)−a(c−a)+b(b−c)=0
⇒c2−ba−ac+a2+b2−bc=0
⇒a2+b2+c2−ab−bc−ac=0
⇒21(a−b)2+(b−c)2+(c−a)2=0
which is possible only when
a−b=0,b−c=0,c−a=0
∴ a=b=c
Then, ∠A=∠B=∠C=60∘
sin2A+sin2B+sin2C=3sin260∘
=3(23)2=49