Question
Question: In a triangle ABC if A = p/4 and tan B tan C = k, then k must satisfy –...
In a triangle ABC if A = p/4 and tan B tan C = k, then k must satisfy –
A
k2 – 6k + 1 ³ 0
B
k2 – 6k + 1 = 0
C
k2 – 6k + 1 £ 0
D
3 – 2 2 < k < 3 + 22
Answer
k2 – 6k + 1 ³ 0
Explanation
Solution
A = p/4, tan B tan C = k ̃ B + C = 3p/4
̃ tan (B + C) = tan 43π
̃ 1−tanBtanCtanB+tanC = –1 ̃ tan B + tan C = (k – 1)
Equation x2 – (k – 1) x + k = 0
whole roots are tan B and tan C
for real vales D ³ 0 (k – 1)2 – 4k ³ 0
̃ k2 – 6k + 1 ³ 0.