Solveeit Logo

Question

Question: In a triangle ABC if A = p/4 and tan B tan C = k, then k must satisfy –...

In a triangle ABC if A = p/4 and tan B tan C = k, then k must satisfy –

A

k2 – 6k + 1 ³ 0

B

k2 – 6k + 1 = 0

C

k2 – 6k + 1 £ 0

D

3 – 2 2\sqrt { 2 } < k < 3 + 22\sqrt { 2 }

Answer

k2 – 6k + 1 ³ 0

Explanation

Solution

A = p/4, tan B tan C = k ̃ B + C = 3p/4

̃ tan (B + C) = tan 3π4\frac { 3 \pi } { 4 }

̃ tanB+tanC1tanBtanC\frac { \tan B + \tan C } { 1 - \tan B \tan C } = –1 ̃ tan B + tan C = (k – 1)

Equation x2 – (k – 1) x + k = 0

whole roots are tan B and tan C

for real vales D ³ 0 (k – 1)2 – 4k ³ 0

̃ k2 – 6k + 1 ³ 0.