Solveeit Logo

Question

Question: In a triangle ABC, if A, B, C are in A.P. and b : c = \(\sqrt{3}\): \(\sqrt{2}\) , then –...

In a triangle ABC, if A, B, C are in A.P. and b : c = 3\sqrt{3}: 2\sqrt{2}

, then –

A

sin (2C – A) = sin (B/4)

B

sin (A – C) = cos (B/2)

C

sin (A + C) = cos 2B

D

cos (A – C) = sin (B/2)

Answer

sin (2C – A) = sin (B/4)

Explanation

Solution

A, B, C are in A. P. ⇒ B = 600.

sinBb\frac{\sin B}{b}= sinCc\frac{\sin C}{c}

⇒ sin C = cb\frac{c}{b} sin B = 23×32\frac{\sqrt{2}}{\sqrt{3}} \times \frac{\sqrt{3}}{2}=12\frac{1}{\sqrt{2}}

⇒ C = 450 and A = 750

Hence sin (2C – A) = sin 150 = sin B/4

and other relations are not true.