Solveeit Logo

Question

Question: In a triangle ABC, if \[{a^4} + {b^4} + {c^4} = 2{a^2}{b^2} + {b^2}{c^2} + 2{c^2}{a^2}\], then find ...

In a triangle ABC, if a4+b4+c4=2a2b2+b2c2+2c2a2{a^4} + {b^4} + {c^4} = 2{a^2}{b^2} + {b^2}{c^2} + 2{c^2}{a^2}, then find the value of sinA\sin A.

Explanation

Solution

First, move all the variables on one side of the equation and add 3b2c23{b^2}{c^2} on both sides of the equation. Then, use the formula (a+b+c)2=a2+b2+c2+2ab+2bc+2ca{\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca to convert the equation into cosine rule of cosA=b2+c2a22bc\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}. Then find the value of angle A and use it to find the value of sinA.\sin A.

Formula used: cosA=b2+c2a22bc\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}
(p+q+r)2=p2+q2+r2+2pq+2qr+2rp{\left( {p + q + r} \right)^2} = {p^2} + {q^2} + {r^2} + 2pq + 2qr + 2rp

Complete step-by-step answer:
Given equation a4+b4+c4=2a2b2+b2c2+2c2a2{a^4} + {b^4} + {c^4} = 2{a^2}{b^2} + {b^2}{c^2} + 2{c^2}{a^2}
We have to find the value of sin A.
Shift all the variables to one side of the equation,
a4+b4+c42a2b2b2c22c2a2=0{a^4} + {b^4} + {c^4} - 2{a^2}{b^2} - {b^2}{c^2} - 2{c^2}{a^2} = 0
Add 3b2c23{b^2}{c^2} to both sides of the equation,
a4+b4+c42a2b2b2c22c2a2+3b2c2=3b2c2{a^4} + {b^4} + {c^4} - 2{a^2}{b^2} - {b^2}{c^2} - 2{c^2}{a^2} + 3{b^2}{c^2} = 3{b^2}{c^2}
Add the like terms to simplify the equation in left side of the equation,
a4+b4+c42a2b2+2b2c22c2a2=3b2c2{a^4} + {b^4} + {c^4} - 2{a^2}{b^2} + 2{b^2}{c^2} - 2{c^2}{a^2} = 3{b^2}{c^2}
As we know that (p+q+r)2=p2+q2+r2+2pq+2qr+2rp{\left( {p + q + r} \right)^2} = {p^2} + {q^2} + {r^2} + 2pq + 2qr + 2rp. Then make the L.H.S. of the equation in this form,
(a2)2+(b2)2+(c2)22(a2)(b2)+2(b2)(c2)2(c2)(a2)=3b2c2{\left( {{a^2}} \right)^2} + {\left( {{b^2}} \right)^2} + {\left( {{c^2}} \right)^2} - 2\left( {{a^2}} \right)\left( {{b^2}} \right) + 2\left( {{b^2}} \right)\left( {{c^2}} \right) - 2\left( {{c^2}} \right)\left( {{a^2}} \right) = 3{b^2}{c^2}
Use negative sign with the terms as needed,
(a2)2+(b2)2+(c2)2+2(a2)b2+2b2c2+2(c2)(a2)=3b2c2{\left( { - {a^2}} \right)^2} + {\left( {{b^2}} \right)^2} + {\left( {{c^2}} \right)^2} + 2\left( { - {a^2}} \right){b^2} + 2{b^2}{c^2} + 2\left( {{c^2}} \right)\left( { - {a^2}} \right) = 3{b^2}{c^2}
Replace (a2)2+(b2)2+(c2)2+2(a2)b2+2b2c2+2(c2)(a2){\left( { - {a^2}} \right)^2} + {\left( {{b^2}} \right)^2} + {\left( {{c^2}} \right)^2} + 2\left( { - {a^2}} \right){b^2} + 2{b^2}{c^2} + 2\left( {{c^2}} \right)\left( { - {a^2}} \right) by (b2+c2a2)2{\left( {{b^2} + {c^2} - {a^2}} \right)^2} to simplify the equation,
(b2+c2a2)2=3b2c2{\left( {{b^2} + {c^2} - {a^2}} \right)^2} = 3{b^2}{c^2}
Take square root on both sides of the equation,
(b2+c2a2)2=3b2c2\sqrt {{{\left( {{b^2} + {c^2} - {a^2}} \right)}^2}} = \sqrt {3{b^2}{c^2}}
Cancel out squares with the square root, we get,
b2+c2a2=3bc{b^2} + {c^2} - {a^2} = \sqrt 3 bc
Now, divide both sides of the equation by 2bc2bc we get,
b2+c2a22bc=3bc2bc\dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \dfrac{{\sqrt 3 bc}}{{2bc}}
Cancel out the common factors,
b2+c2a22bc=32\dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \dfrac{{\sqrt 3 }}{2}
As we know that the cosine rule of cosA=b2+c2a22bc\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}. Replace the term by cosA\cos A,
cosA=32\cos A = \dfrac{{\sqrt 3 }}{2}
Since, cosπ6=32\cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2}. Replace 32\dfrac{{\sqrt 3 }}{2} by cosπ6\cos \dfrac{\pi }{6},
cosA=cosπ6\cos A = \cos \dfrac{\pi }{6}
Thus, A=π6A = \dfrac{\pi }{6}
Now, find the value of sinA\sin A,
sinA=sinπ6\sin A = \sin \dfrac{\pi }{6}
We know from trigonometric standard angles table sinπ6=12\sin \dfrac{\pi }{6} = \dfrac{1}{2}
So, sinA=12\sin A = \dfrac{1}{2}

So, the correct answer is “Option D”.

Note: This type of problem can be solved by performing the cosine rule of cosA=b2+c2a22bc\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}. Students should be taken care of when adding the like terms, changing the signs. Students must recall the algebraic identity,trigonometry formula and trigonometric standard angles for solving these types of problems.