Solveeit Logo

Question

Question: In a triangle ABC, if \(2\overset{\rightarrow}{AC} = 3\overset{\rightarrow}{CB},\) then \(2\overset{...

In a triangle ABC, if 2AC=3CB,2\overset{\rightarrow}{AC} = 3\overset{\rightarrow}{CB}, then 2OA+3OB2\overset{\rightarrow}{OA} + 3\overset{\rightarrow}{OB} equals

A

5OC5\overset{\rightarrow}{OC}

B

13(2i2j+k)\frac{1}{3}(2\mathbf{i} - 2\mathbf{j} + \mathbf{k})

C

OC\overset{\rightarrow}{OC}

D

None of these

Answer

5OC5\overset{\rightarrow}{OC}

Explanation

Solution

2OA+3OB=2(OC+CA)+3(OC+CB)2\overset{\rightarrow}{OA} + 3\overset{\rightarrow}{OB} = 2(\overset{\rightarrow}{OC} + \overset{\rightarrow}{CA}) + 3(\overset{\rightarrow}{OC} + \overset{\rightarrow}{CB})

=5OC+2CA+3CB=5OC= 5\overset{\rightarrow}{OC} + 2\overset{\rightarrow}{CA} + 3\overset{\rightarrow}{CB} = 5\overset{\rightarrow}{OC}, {2CA=3CB}\{\because 2\overset{\rightarrow}{CA} = - 3\overset{\rightarrow}{CB}\}.