Solveeit Logo

Question

Question: In a triangle ABC, I is the incentre. If BC = a, CA = b, AB = g, then a\(\overset{\rightarrow}{IA}\...

In a triangle ABC, I is the incentre. If BC = a, CA = b,

AB = g, then aIA\overset{\rightarrow}{IA}+ bIB\overset{\rightarrow}{IB} + gIC\overset{\rightarrow}{IC} is equal to-

A

zero vector

B

(a + b + g)IA\overset{\rightarrow}{IA}

C

(a + b + g)IB\overset{\rightarrow}{IB}

D

(a + b + g)IC\overset{\rightarrow}{IC}

Answer

zero vector

Explanation

Solution

If the incentre I be chosen as the origin and a\overline{a},b\overline{b},c\overline{c} be the position vectors of A,B,C then the position vector of

I = αa+βb+γcα+β+γ\frac{\alpha\overline{a} + \beta\overline{b} + \gamma\overline{c}}{\alpha + \beta + \gamma}

But position vector of I is zero, since it is chosen as the origin.

\ αa+βb+γcα+β+γ\frac{\alpha\overline{a} + \beta\overline{b} + \gamma\overline{c}}{\alpha + \beta + \gamma} = 0\overset{\rightarrow}{0} ̃ aa\overline{a} + bb\overline{b} + gc\overline{c} = 0\overset{\rightarrow}{0}