Solveeit Logo

Question

Question: In a triangle ABC, G is the centroid (point of concurrency of the triangle’s medians) and E is any p...

In a triangle ABC, G is the centroid (point of concurrency of the triangle’s medians) and E is any point. If BC = a{\text{BC = }}a , AC = b{\text{AC = b}} , AB = c{\text{AB = c}} , AE = ea{\text{AE = }}{e_a} , BE = eb{\text{BE = }}{e_b} , CE = ec{\text{CE = }}{e_c} and EG = m{\text{EG = }}m then find the value of a2+b2+c2ea2+eb2+ec23m2\dfrac{{{a^2} + {b^2} + {c^2}}}{{{e_a}^2 + {e_b}^2 + {e_c}^2 - 3{m^2}}} .

Explanation

Solution

Hint : The point of concurrency is a point where three or more lines or rays intersect with each other. Use triangles AEG, BEG and CEG and make an equation by keeping in mind the lengths of the sides then squaring both sides of all equations and then them all to find the value of the expression given in the question.

Complete step-by-step answer :
A centroid is a point where three medians of a triangle meet. In other words, the centroid G of a triangle ABC is the intersection of the three medians or the average of the three vertices (A, B, C).
It is given that BC = a{\text{BC = }}a , AC = b{\text{AC = b}} , AB = c{\text{AB = c}} , AE = ea{\text{AE = }}{e_a} , BE = eb{\text{BE = }}{e_b} , CE = ec{\text{CE = }}{e_c} and EG = m{\text{EG = }}m

As we know that if G is the centroid of a triangle and we joined the centroid of the triangle to the vertices then
GA + GB + GC = 0\overrightarrow {{\text{GA}}} {\text{ + }}\overrightarrow {{\text{GB}}} {\text{ + }}\overrightarrow {{\text{GC}}} {\text{ = }}\overrightarrow {\text{0}} --------- (i)
Also it is given that E is any point in the triangle ABC from which we connect it to the vertices of the triangle. Also the line segment EG is in the direction from E to G. Therefore, in triangle AEG we have
EA=EG + GA\overrightarrow {{\text{EA}}} = \overrightarrow {{\text{EG}}} {\text{ + }}\overrightarrow {{\text{GA}}}
On squaring both sides we get
EA2=EG2 + GA2 + 2EG.GA{\left| {{\text{EA}}} \right|^2} = {\left| {{\text{EG}}} \right|^2}{\text{ + }}{\left| {{\text{GA}}} \right|^2}{\text{ + 2}}\left| {{\text{EG}}} \right|.\left| {{\text{GA}}} \right| ------- (ii)
Similarly in triangle BEG we have
EB = EG + GB\overrightarrow {{\text{EB}}} {\text{ = }}\overrightarrow {{\text{EG}}} {\text{ + }}\overrightarrow {{\text{GB}}}
On squaring both sides we get
EB2=EG2 + GB2 + 2EG.GB{\left| {{\text{EB}}} \right|^2} = {\left| {{\text{EG}}} \right|^2}{\text{ + }}{\left| {{\text{GB}}} \right|^2}{\text{ + 2}}\left| {{\text{EG}}} \right|.\left| {{\text{GB}}} \right| -------- (iii)
Again in the triangle CEG we have
EC = EG + GC\overrightarrow {{\text{EC}}} {\text{ = }}\overrightarrow {{\text{EG}}} {\text{ + }}\overrightarrow {{\text{GC}}}
On squaring both sides we get
EC2=EG2 + GC2 + 2EG.GC{\left| {{\text{EC}}} \right|^2} = {\left| {{\text{EG}}} \right|^2}{\text{ + }}{\left| {{\text{GC}}} \right|^2}{\text{ + 2}}\left| {{\text{EG}}} \right|.\left| {{\text{GC}}} \right| --------(iv)
On adding equations (ii), (iii) and (iv) we get
EA2 + EB2 + EC2{\left| {{\text{EA}}} \right|^2}{\text{ + }}{\left| {{\text{EB}}} \right|^2}{\text{ + }}{\left| {{\text{EC}}} \right|^2}  = {\text{ = }} 3EG2 + GA2 + 2EG.GA3{\left| {{\text{EG}}} \right|^2}{\text{ + }}{\left| {{\text{GA}}} \right|^2}{\text{ + 2}}\left| {{\text{EG}}} \right|.\left| {{\text{GA}}} \right|  + GB2 + 2EG.GB{\text{ + }}{\left| {{\text{GB}}} \right|^2}{\text{ + 2}}\left| {{\text{EG}}} \right|.\left| {{\text{GB}}} \right|  + GC2 + 2EG.GC{\text{ + }}{\left| {{\text{GC}}} \right|^2}{\text{ + 2}}\left| {{\text{EG}}} \right|.\left| {{\text{GC}}} \right|
By taking 2EG{\text{2}}\left| {{\text{EG}}} \right| common the above expression becomes
EA2 + EB2 + EC2{\left| {{\text{EA}}} \right|^2}{\text{ + }}{\left| {{\text{EB}}} \right|^2}{\text{ + }}{\left| {{\text{EC}}} \right|^2}  = {\text{ = }} 3EG2 + GA2 + GB2 + GC23{\left| {{\text{EG}}} \right|^2}{\text{ + }}{\left| {{\text{GA}}} \right|^2}{\text{ + }}{\left| {{\text{GB}}} \right|^2}{\text{ + }}{\left| {{\text{GC}}} \right|^2}  + 2EG.(GA + GB + GC){\text{ + 2}}\left| {{\text{EG}}} \right|.\left( {\left| {{\text{GA}}} \right|{\text{ + }}\left| {{\text{GB}}} \right|{\text{ + }}\left| {{\text{GC}}} \right|} \right)
Using equation (i) we get
EA2 + EB2 + EC2{\left| {{\text{EA}}} \right|^2}{\text{ + }}{\left| {{\text{EB}}} \right|^2}{\text{ + }}{\left| {{\text{EC}}} \right|^2}  = {\text{ = }} 3EG2 + GA2 + GB2 + GC23{\left| {{\text{EG}}} \right|^2}{\text{ + }}{\left| {{\text{GA}}} \right|^2}{\text{ + }}{\left| {{\text{GB}}} \right|^2}{\text{ + }}{\left| {{\text{GC}}} \right|^2}  + 2EG.0{\text{ + 2}}\left| {{\text{EG}}} \right|.\overrightarrow 0 ---------(v)
As we know that the centroid G of a triangle ABC is the average of the three vertices of the triangle therefore we can say that AB2 + BC2 + CA2 = 3(GA2 + GB2 + GC2){\left| {{\text{AB}}} \right|^2}{\text{ + }}{\left| {{\text{BC}}} \right|^2}{\text{ + }}{\left| {{\text{CA}}} \right|^2}{\text{ = }}3\left( {{{\left| {{\text{GA}}} \right|}^2}{\text{ + }}{{\left| {{\text{GB}}} \right|}^2}{\text{ + }}{{\left| {{\text{GC}}} \right|}^2}} \right) that is AB2 + BC2 + CA23 = GA2 + GB2 + GC2\dfrac{{{{\left| {{\text{AB}}} \right|}^2}{\text{ + }}{{\left| {{\text{BC}}} \right|}^2}{\text{ + }}{{\left| {{\text{CA}}} \right|}^2}}}{3}{\text{ = }}{\left| {{\text{GA}}} \right|^2}{\text{ + }}{\left| {{\text{GB}}} \right|^2}{\text{ + }}{\left| {{\text{GC}}} \right|^2}
So the equation (v) becomes
EA2 + EB2 + EC2{\left| {{\text{EA}}} \right|^2}{\text{ + }}{\left| {{\text{EB}}} \right|^2}{\text{ + }}{\left| {{\text{EC}}} \right|^2}  = {\text{ = }} 3EG2+AB2 + BC2 + CA233{\left| {{\text{EG}}} \right|^2} + \dfrac{{{{\left| {{\text{AB}}} \right|}^2}{\text{ + }}{{\left| {{\text{BC}}} \right|}^2}{\text{ + }}{{\left| {{\text{CA}}} \right|}^2}}}{3}
Now by substituting the values given in the question we get
ea2 + eb2 + ec2{e_a}^2{\text{ + }}{e_b}^2{\text{ + }}{e_c}^2  = {\text{ = }} 3m2+a2 + b2 + c233{m^2} + \dfrac{{{a^2}{\text{ + }}{b^2}{\text{ + }}{c^2}}}{3}
By shifting 3m23{m^2} to the left side we have
a2 + b2 + c23 = ea2 + eb2 + ec23m2\dfrac{{{a^2}{\text{ + }}{b^2}{\text{ + }}{c^2}}}{3}{\text{ = }}{e_a}^2{\text{ + }}{e_b}^2{\text{ + }}{e_c}^2 - 3{m^2}
Or we can write the above expression as
a2 + b2 + c2ea2 + eb2 + ec23m2 = 3\dfrac{{{a^2}{\text{ + }}{b^2}{\text{ + }}{c^2}}}{{{e_a}^2{\text{ + }}{e_b}^2{\text{ + }}{e_c}^2 - 3{m^2}}}{\text{ = }}3
Hence the value of a2 + b2 + c2ea2 + eb2 + ec23m2\dfrac{{{a^2}{\text{ + }}{b^2}{\text{ + }}{c^2}}}{{{e_a}^2{\text{ + }}{e_b}^2{\text{ + }}{e_c}^2 - 3{m^2}}} is 33 .
So, the correct answer is “3”.

Note : The centroid divides each of the medians in the ratio 2:12:1 . Centroid always lies within the triangle. Substitute the values carefully otherwise you will get the wrong answer. Keep in mind all the properties of a triangle or formulas that we used in the solution. Also keep in mind that GA + GB + GC = 0\overrightarrow {{\text{GA}}} {\text{ + }}\overrightarrow {{\text{GB}}} {\text{ + }}\overrightarrow {{\text{GC}}} {\text{ = }}\overrightarrow {\text{0}} as G is the point of concurrency in the triangle ABC.