Solveeit Logo

Question

Question: In a triangle \(ABC\), \(\cos mA + \cos mB + \cos mC - 1 = \pm 4\sin \dfrac{{mA}}{2}\sin \dfrac{{mB}...

In a triangle ABCABC, cosmA+cosmB+cosmC1=±4sinmA2sinmB2sinmC2\cos mA + \cos mB + \cos mC - 1 = \pm 4\sin \dfrac{{mA}}{2}\sin \dfrac{{mB}}{2}\sin \dfrac{{mC}}{2} according as mm is of the form 4n+14n + 1 or 4n+34n + 3is.

A.True

B.False

Explanation

Solution

We know that in a triangle ABCABC the sum of all the angles is equal to 180180^\circ that is A+B+C=180A + B + C = 180^\circ or A+B2=90C2\dfrac{{A + B}}{2} = 90 - \dfrac{C}{2}. We will use the property of cosA\cos A is equal to 12sin2(C2)1 - 2{\sin ^2}\left( {\dfrac{C}{2}} \right). Also, we have to use the property that cosA+cosB\cos A + \cos B is equal to 2cos(A+B2)cos(AB2)2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right).

Complete step by step solution
Given:
It is given that ABCABCis a triangle.

So, we have A+B+C=180A + B + C = 180^\circ , since the sum of angles of the triangle is 180180^\circ .

Our aim is to show that,
cosmA+cosmB+cosmC1=±4sinmA2sinmB2sinmC2\cos mA + \cos mB + \cos mC - 1 = \pm 4\sin \dfrac{{mA}}{2}\sin \dfrac{{mB}}{2}\sin \dfrac{{mC}}{2}......(1)

Since, we can write the above equation in the form of,cosmA+cosmB+cosmC=1±4sinmA2sinmB2sinmC2\cos mA + \cos mB + \cos mC = 1 \pm 4\sin \dfrac{{mA}}{2}\sin \dfrac{{mB}}{2}\sin \dfrac{{mC}}{2}......(2)

We will solve further by taking the left hand side and show that it is equal to the right hand side.

Now let us take cosmA+cosmB+cosmC\cos mA + \cos mB + \cos mC.

We will now use the formula that is,
cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)

Now, on applying the above formula in cosmA+cosmB+cosmC\cos mA + \cos mB + \cos mC we get,
2cos(mA+mB2)cos(mAmB2)+cosmC 2cos(m(A+B)2)cos(m(AB)2)+cosmC\begin{array}{l} 2\cos \left( {\dfrac{{mA + mB}}{2}} \right)\cos \left( {\dfrac{{mA - mB}}{2}} \right) + \cos mC\\\ 2\cos \left( {\dfrac{{m\left( {A + B} \right)}}{2}} \right)\cos \left( {\dfrac{{m\left( {A - B} \right)}}{2}} \right) + \cos mC \end{array}

Also, let us use another formula of trigonometry that is,
cos2C=12sin2C\cos 2C = 1 - 2{\sin ^2}C

On applying the above formula in 2cos(m(A+B)2)cos(m(AB)2)+cosmC2\cos \left( {\dfrac{{m\left( {A + B} \right)}}{2}} \right)\cos \left( {\dfrac{{m\left( {A - B} \right)}}{2}} \right) + \cos mC we get,
2cos(m(A+B)2)cos(m(AB)2)+12sin2(mC2)2\cos \left( {\dfrac{{m\left( {A + B} \right)}}{2}} \right)\cos \left( {\dfrac{{m\left( {A - B} \right)}}{2}} \right) + 1 - 2{\sin ^2}\left( {\dfrac{{mC}}{2}} \right)

Since it is known that ABCABC is triangle, so we get,
A+B=180C A+B2=90C2\begin{array}{l} A + B = 180 - C\\\ \dfrac{{A + B}}{2} = 90 - \dfrac{C}{2} \end{array}

So now let us use this in the above equation, we get,
2cos(m(90C2))cos(m(AB)2)+12sin2(mC2) 2cos(90mC2)cos(m(AB)2)+1sin2(mC2)\begin{array}{l} 2\cos \left( {m\left( {90 - \dfrac{C}{2}} \right)} \right)\cos \left( {\dfrac{{m\left( {A - B} \right)}}{2}} \right) + 1 - 2{\sin ^2}\left( {\dfrac{{mC}}{2}} \right)\\\ 2\cos \left( {90m - \dfrac{C}{2}} \right)\cos \left( {\dfrac{{m\left( {A - B} \right)}}{2}} \right) + 1 - {\sin ^2}\left( {\dfrac{{mC}}{2}} \right) \end{array}

Now, we will use the formula from the trigonometry, we have,
cos(m90mC2)=±sin(mC2)\cos \left( {m90 - \dfrac{{mC}}{2}} \right) = \pm \sin \left( {\dfrac{{mC}}{2}} \right)

Where, mm is of the form 4n+14n + 1, 4n+34n + 3.

On Substituting the above equation in 2cos(90mmC2)cos(m(AB)2)+1sin2(mC2)2\cos \left( {90m - \dfrac{{mC}}{2}} \right)\cos \left( {\dfrac{{m\left( {A - B} \right)}}{2}} \right) + 1 - {\sin ^2}\left( {\dfrac{{mC}}{2}} \right) we get,
±2sin(mC2)cos(m(AB)2)+1sin2(mC2)\pm 2\sin \left( {\dfrac{{mC}}{2}} \right)\cos \left( {\dfrac{{m\left( {A - B} \right)}}{2}} \right) + 1 - {\sin ^2}\left( {\dfrac{{mC}}{2}} \right)

Since, sin(mC2)\sin \left( {\dfrac{{mC}}{2}} \right) is common in both let us take common.
±2sin(mC2)(cos(m(AB)2)sin(mC2))+1\pm 2\sin \left( {\dfrac{{mC}}{2}} \right)\left( {\cos \left( {\dfrac{{m\left( {A - B} \right)}}{2}} \right) - \sin \left( {\dfrac{{mC}}{2}} \right)} \right) + 1

Since, we know that C2=A+B2\dfrac{C}{2} = \dfrac{{A + B}}{2}. So, we will substitute in the above equation we get,
±2sin(mC2)(cos(m(AB)2)sin(m(A+B)2))+1\pm 2\sin \left( {\dfrac{{mC}}{2}} \right)\left( {\cos \left( {\dfrac{{m\left( {A - B} \right)}}{2}} \right) - \sin \left( {\dfrac{{m\left( {A + B} \right)}}{2}} \right)} \right) + 1

Let us use the formula that is cos(A)cos(B)=2sin(A+B2)sin(AB2)\cos \left( A \right) - \cos \left( B \right) = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right),

Here, in our problem A=ABA = A - B and B=A+BB = A + B so, we get,

±2sin(mC2)(2sin(A2)sin(B2))+1 ±4sin(mC2)(sin(A2)sin(B2))+1\begin{array}{l} \pm 2\sin \left( {\dfrac{{mC}}{2}} \right)\left( {2\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)} \right) + 1\\\ \pm 4\sin \left( {\dfrac{{mC}}{2}} \right)\left( {\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)} \right) + 1 \end{array}

Hence, the right hand side is proved that is,cosmA+cosmB+cosmC=1±4sinmA2sinmB2sinmC2\cos mA + \cos mB + \cos mC = 1 \pm 4\sin \dfrac{{mA}}{2}\sin \dfrac{{mB}}{2}\sin \dfrac{{mC}}{2}.

Here, we can see that mm is of the form 4n+14n + 1 or 4n+34n + 3 we get,

cosmA+cosmB+cosmC1=±4sinmA2sinmB2sinmC2\cos mA + \cos mB + \cos mC - 1 = \pm 4\sin \dfrac{{mA}}{2}\sin \dfrac{{mB}}{2}\sin \dfrac{{mC}}{2}.

Therefore, the answer is true.

Note: We are not taking mm as even because cos(m90mC2)\cos \left( {m90 - \dfrac{{mC}}{2}} \right). For example take m=2m = 2 then we get cos(180mC2)=cos(mC2)\cos \left( {180 - \dfrac{{mC}}{2}} \right) = \cos \left( {\dfrac{{mC}}{2}} \right) . Here, we got cos\cos term but in the proof all the terms should be in sin\sin . We will not get the sin\sin term if we take mm as 4n4n or 4n+24n + 2. So the only possibilities for mm are 4n+14n + 1 and 4n+34n + 3.