Solveeit Logo

Question

Question: In a triangle ABC, ŠC = \(\frac{\pi}{2}\). If tan \(\left( \frac{A}{2} \right)\)and tan\(\left( \fra...

In a triangle ABC, ŠC = π2\frac{\pi}{2}. If tan (A2)\left( \frac{A}{2} \right)and tan(B2)\left( \frac{B}{2} \right)are the roots of the equation ax2 + bx + c = 0 (a ¹ 0) then

A

a + b = c

B

b + c = a

C

a + c = b

D

b = c

Answer

a + b = c

Explanation

Solution

tan A2\frac{A}{2} + tan B2\frac{B}{2} = – b/a ...(i)

tan A2\frac{A}{2}.tan B2\frac{B}{2} = c/a ...(ii)

A + B = p/2 Ž A2\frac{A}{2} + B2\frac{B}{2} = p/4

Ž tan (A2\frac{A}{2} + B2\frac{B}{2}) = 1

–b/a/1 – c/a = 1 Ž b = c – a

Ž a + b = c