Solveeit Logo

Question

Question: In a triangle ABC, AD is the bisector of angle A meeting BC at D. If I is the in-centre of the trian...

In a triangle ABC, AD is the bisector of angle A meeting BC at D. If I is the in-centre of the triangle, then AI:DIAI:DI is, $$$$
A. \left( \sin B+ \sin C \right):\sin A$$$$$ B. \left( \cos B+ \cos C \right):\sin A C. $\cos \left( \dfrac{B-C}{2} \right):\cos \left( \dfrac{B+C}{2} \right)
D. sin(BC2):sin(B+C2)\sin \left( \dfrac{B-C}{2} \right):\sin \left( \dfrac{B+C}{2} \right)$$$$

Explanation

Solution

We join BI and CI. We use angle bisector theorem for the angles ABD,ACD\angle ABD,\angle ACD in triangle ABD and ACD to get AIDI=b+ca\dfrac{AI}{DI}=\dfrac{b+c}{a} where a=BC,b=AC,c=ABa=BC,b=AC,c=AB. We use sine law of triangle asinA=bsinB=csinC\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C} and the identities sinC+sinD=2sin(C+D2)cos(CD2)\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right),sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta to choose the correct options. $$$$

Complete step-by-step solution:

Let us denote the lengths of the sides as AB=c,BC=a,AC=bAB=c,BC=a,AC=b. Let us join BI and CI. We know from the angle bisector theorem, which states that the angle bisector divides the opposite side in a ratio equal to the ratio of lengths of corresponding adjacent sides of the angle. We use the angle bisector theorem in triangle ABD for the bisector BI of the ABD\angle ABD which divides the opposite side AD into AI and DI and has adjacent sides AB and BD respectively . We have

& \dfrac{AI}{DI}=\dfrac{AB}{BD} \\\ & \Rightarrow \dfrac{AI}{DI}=\dfrac{c}{BD}.....\left( 1 \right) \\\ \end{aligned}$$ We again use the angle bisector theorem in triangle ABD for the bisector BI of the $\angle ACD$ which divides the opposite side AD into AI and DI and has adjacent sides are AC and CD respectively. We have $$\begin{aligned} & \dfrac{AI}{DI}=\dfrac{AC}{CD} \\\ & \Rightarrow \dfrac{AI}{DI}=\dfrac{b}{CD}.......\left( 2 \right) \\\ \end{aligned}$$ We equate right hand sides of (1) and (2) to have; $$\begin{aligned} & \dfrac{b}{CD}=\dfrac{c}{BD} \\\ & \Rightarrow \dfrac{b}{c}=\dfrac{CD}{BD}\left( \text{By alternendo} \right) \\\ \end{aligned}$$ We add both sides by 1 to have; $$\begin{aligned} & \Rightarrow \dfrac{b+c}{c}=\dfrac{CD+BD}{BD} \\\ & \Rightarrow \dfrac{b+c}{c}=\dfrac{BC}{BD} \\\ & \Rightarrow \dfrac{b+c}{c}=\dfrac{a}{BD} \\\ & \Rightarrow \dfrac{b+c}{a}=\dfrac{c}{BD}......\left( 3 \right) \\\ \end{aligned}$$ We have from (1) and (3) $$\dfrac{AI}{DI}=\dfrac{b+c}{a}.......\left( 4 \right)$$ We know from sine law that the lengths of triangle and sine of the angle of the opposite sides are always in proportion. It means; $$\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=2R$$ Here $R$ is the circum-radius of the triangle. So we have; $$a=2R\sin A,b=2R \sin B,c=2R \sin C$$ We put the above values in (4) to have; $$\begin{aligned} & \dfrac{AI}{DI}=\dfrac{2R\sin B+2R\sin C}{2R\sin A} \\\ & \Rightarrow \dfrac{AI}{DI}=\dfrac{\sin B+\sin C}{\sin A}......\left( 5 \right) \\\ \end{aligned}$$ We use the identity $\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$ for $C=A,D=C$ and teh sine double angle formula $\sin 2\theta =2\sin \theta \cos \theta $ for $\theta =\dfrac{A}{2}$ in the above step to have $$\dfrac{AI}{DI}=\dfrac{2\sin \left( \dfrac{B+C}{2} \right)\cos \left( \dfrac{B-C}{2} \right)}{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}$$ We know in a triangle $A+B+C=\pi $then we have $\dfrac{\pi }{2}-\dfrac{B+C}{2}=\dfrac{A}{2}$. We have $$\begin{aligned} & \Rightarrow \dfrac{AI}{DI}=\dfrac{\sin \left( \dfrac{B+C}{2} \right)\cos \left( \dfrac{B-C}{2} \right)}{\sin \left( \dfrac{\pi }{2}-\dfrac{B+C}{2} \right)\cos \left( \dfrac{\pi }{2}-\dfrac{B+C}{2} \right)} \\\ & \Rightarrow \dfrac{AI}{DI}=\dfrac{\sin \left( \dfrac{B+C}{2} \right)\cos \left( \dfrac{B-C}{2} \right)}{\cos \left( \dfrac{B+C}{2} \right)\sin \left( \dfrac{B+C}{2} \right)} \\\ & \Rightarrow \dfrac{AI}{DI}=\dfrac{\cos \left( \dfrac{B-C}{2} \right)}{\cos \left( \dfrac{B+C}{2} \right)}....\left( 6 \right) \\\ \end{aligned}$$ We have from (5) and (6) $$AI:DI=\left( \sin B+\sin C \right):\sin A=\cos \left( \dfrac{B-C}{2} \right):\cos \left( \dfrac{B+C}{2} \right)$$ **So the correct options are A and C.** **Note:** We can alternatively use the theorem that the in-centre divides the angle bisector in ratio that is equal to the ratio of sum of the lengths of adjacent sides to the opposite sides to directly get $\dfrac{AI}{DI}=\dfrac{b+c}{a}$. We note that in-centre is the point of intersection of angle bisectors and circum-centre is the point of intersection of perpendicular bisectors of sides