Solveeit Logo

Question

Question: In a triangle ABC, AD is altitude from A. Given b\>c, \(\angle C = 23 ^ { \circ }\) and \(A D = \fr...

In a triangle ABC, AD is altitude from A. Given b>c,

C=23\angle C = 23 ^ { \circ } and AD=abcb2c2A D = \frac { a b c } { b ^ { 2 } - c ^ { 2 } } then B\angle B equal to

A

6767 ^ { \circ }

B
C

113113 ^ { \circ }

D

None of these

Answer

113113 ^ { \circ }

Explanation

Solution

cosB=a2+c2b22ac=a2(b2c2)2ac\cos B = \frac { a ^ { 2 } + c ^ { 2 } - b ^ { 2 } } { 2 a c } = \frac { a ^ { 2 } - \left( b ^ { 2 } - c ^ { 2 } \right) } { 2 a c }

Now, AD=abcb2c2A D = \frac { a b c } { b ^ { 2 } - c ^ { 2 } } ; \therefore cosB=a2abcAD2ac\cos B = \frac { a ^ { 2 } - \frac { a b c } { A D } } { 2 a c }

Also AD=bsin23A D = b \sin 23 ^ { \circ } ; cosB=acsin232c\therefore \cos B = \frac { a - \frac { c } { \sin 23 ^ { \circ } } } { 2 c }

By sine formulae ⇒ ac=sin(B+23)sin23\frac { a } { c } = \frac { \sin \left( B + 23 ^ { \circ } \right) } { \sin 23 ^ { \circ } } ;

\therefore cosB=[sin(B+23)sin231sin23]2\cos B = \frac { \left[ \frac { \sin \left( B + 23 ^ { \circ } \right) } { \sin 23 ^ { \circ } } - \frac { 1 } { \sin 23 ^ { \circ } } \right] } { 2 }

sin(23B)=1=sin(90)\sin \left( 23 ^ { \circ } - B \right) = - 1 = \sin \left( - 90 ^ { \circ } \right) ; therefore 23B=9023 ^ { \circ } - B = - 90 ^ { \circ } or

B=113B = 113 ^ { \circ }.