Solveeit Logo

Question

Question: In a triangle ABC, a, b, c are the lengths of its sides and A,B,C are the angles of triangle ABC. Th...

In a triangle ABC, a, b, c are the lengths of its sides and A,B,C are the angles of triangle ABC. The correct relation is given by.
(A) (bc)(BC2)=a cosA2(A){\text{ }}(b - c)\left( {\dfrac{{B - C}}{2}} \right) = {\text{a cos}}\dfrac{A}{2}
(B) (bc)cosA2=a sin(BC2)(B){\text{ }}(b - c){\text{cos}}\dfrac{A}{2} = {\text{a sin}}\left( {\dfrac{{B - C}}{2}} \right)
(C) (bc)sin (BC2)=a cosA2(C){\text{ }}(b - c){\text{sin }}\left( {\dfrac{{B - C}}{2}} \right) = {\text{a cos}}\dfrac{A}{2}
(D) (bc)sin A2=2 a sin(B+C2)(D){\text{ }}(b - c){\text{sin }}\dfrac{A}{2} = 2{\text{ a sin}}\left( {\dfrac{{B + C}}{2}} \right)

Explanation

Solution

In the question we had given a triangle also lengths and angles of triangle ABCABC are given. We have given four options and we have to check which one out of four options is correct. We will check it by using properties and identities of triangles where angles and sides (lengths) of triangles are given.

Complete step-by-step answer:
In the question, we had given a triangle ABCABCand also given that a, b and ca,{\text{ }}b{\text{ and }}c are the length of the sides of triangle ABCABCand A,B,CA,B,C are the angles of the triangle ABCABCThem we have to check out that which option out of four is correct I option (ii)(ii)we have to prove.
(bc) cosA2=a sin (BC2)(b - c){\text{ cos}}\dfrac{A}{2} = {\text{a sin }}\left( {\dfrac{{B - C}}{2}} \right)
We know that in triangleABCABC
a=2R sin A,b=2R sin B and C=2R sin Ca = 2R{\text{ sin }}A,b = 2R{\text{ sin }}B{\text{ and }}C = 2R{\text{ sin }}C
Where A,B,CA,B,Care the angles of the triangle ABCABC
Therefore we are taking the termbca\dfrac{{b - c}}{a}
On substituting the values of a, b, ca,{\text{ }}b,{\text{ }}chave we get
bca2R sin B2R sin C2R sinA\Rightarrow \dfrac{{b - c}}{a} - \dfrac{{2R{\text{ sin }}B - 2R{\text{ sin }}C}}{{2R{\text{ }}\operatorname{sin} A}}
22R is common in all the terms on the right hand side.
bca2R(sin Bsin C)2R sinA\Rightarrow \dfrac{{b - c}}{a} - \dfrac{{2R({\text{sin }}B - {\text{sin }}C)}}{{2R{\text{ }}\operatorname{sin} A}}
22R gets cancel in numerator & denominator
bcasinBsinCsinA\Rightarrow \dfrac{{b - c}}{a} - \dfrac{{\operatorname{sin} B - \operatorname{sin} C}}{{\operatorname{sin} A}}
Applying the formula in numerator which is
sinxsiny=2cos(x+y2)sin(xy2)\operatorname{sin} x - \operatorname{sin} y = 2\cos \left( {\dfrac{{x + y}}{2}} \right)\sin \left( {\dfrac{{x - y}}{2}} \right)
We get,
bca2cos(B+C2)sin(BC2)sinA\dfrac{{b - c}}{a} - \dfrac{{2\cos \left( {\dfrac{{B + C}}{2}} \right)\operatorname{sin} \left( {\dfrac{{B - C}}{2}} \right)}}{{\operatorname{sin} A}}
In the denomination applying the identity
sin2x=2sinxcosAx,\operatorname{sin} 2x = 2\sin x\cos Ax, we get
bca2cos(B+C2)sin(BC2)sinA2cosA2 ..............(1)\dfrac{{b - c}}{a} - \dfrac{{2\cos \left( {\dfrac{{B + C}}{2}} \right)\operatorname{sin} \left( {\dfrac{{B - C}}{2}} \right)}}{{\operatorname{sin} \dfrac{A}{2}\cos \dfrac{A}{2}}}{\text{ }}..............{\text{(1)}}
since sum of all the angles of triangle is 1800{180^0} or π\pi , so up get
A+B+C=πA + B + C = \pi
or B+C=πAB + C = \pi - A
and the term cos(B+C2)\cos \left( {\dfrac{{B + C}}{2}} \right) becomes cos(π2π2)\cos \left( {\dfrac{\pi }{2} - \dfrac{\pi }{2}} \right)
since cos(π2x)=sin x\cos \left( {\dfrac{\pi }{2} - x} \right) = {\text{sin }}x
So cos(B+C2) becomes sin A2\cos \left( {\dfrac{{B + C}}{2}} \right){\text{ becomes sin }}\dfrac{A}{2}
So equation (1)(1) becomes
bca2sinA2sin(BC2)2sinA2 cos A2 \Rightarrow \dfrac{{b - c}}{a} - \dfrac{{2\sin \dfrac{A}{2}\operatorname{sin} \left( {\dfrac{{B - C}}{2}} \right)}}{{2\operatorname{sin} \dfrac{A}{2}{\text{ }}\cos {\text{ }}\dfrac{A}{2}}}{\text{ }}
The term 22 sin A2\dfrac{A}{2} gets cancel in numerator and denominator
bca=sin(BC2)cos A2 \Rightarrow \dfrac{{b - c}}{a} = \dfrac{{\operatorname{sin} \left( {\dfrac{{B - C}}{2}} \right)}}{{\cos {\text{ }}\dfrac{A}{2}}}{\text{ }}
On cross multiplying it, we get
(bc)cosA2=a sin(BC2)\Rightarrow (b - c)\cos \dfrac{A}{2} = {\text{a sin}}\left( {\dfrac{{B - C}}{2}} \right)
Hence option (ii)(ii) is correct.

Note: Sum of all the angles of triangle area 1800{180^0} which is known as angle sum property of the triangles. Also in triangle, the angle AA is made opposite to side a and similarly for other which means opposite two sides a,b and ca,b{\text{ and }}c angles made are A,B and CA,B{\text{ and }}C respectively.