Solveeit Logo

Question

Question: In a triangle ABC, a, b, A are given and \(c_{1},c_{2}\) are two values of third side c. The sum of ...

In a triangle ABC, a, b, A are given and c1,c2c_{1},c_{2} are two values of third side c. The sum of the areas of triangles with sides a, b, c1c_{1} and a,b,c2a,b,c_{2} is

A

12a2sin2A\frac{1}{2}a^{2}\sin 2A

B

12b2sin2A\frac{1}{2}b^{2}\sin 2A

C

b2sin2Ab^{2}\sin 2A

D

a2sin2Aa^{2}\sin 2A

Answer

12b2sin2A\frac{1}{2}b^{2}\sin 2A

Explanation

Solution

Let the triangles be Δ1=ABC1\Delta_{1} = ABC_{1} and Δ2=ABC2\Delta_{2} = ABC_{2} A, b, a are given and c has two values. Hence we apply cosine formulae cosA=b2+c2a22bc\cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc} or c22bccosA+b2a2=0c^{2} - 2bc\cos A + b^{2} - a^{2} = 0.

Above is quadratic in c If c1,c2c_{1},c_{2} be the two values of c, then c1+c2=2bcosA,c1c2=b2a2c_{1} + c_{2} = 2b\cos A,c_{1}c_{2} = b^{2} - a^{2}

Δ1=12absinC1\Delta_{1} = \frac{1}{2}ab\sin C_{1}, Δ2=12absinC2\Delta_{2} = \frac{1}{2}ab\sin C_{2}

\therefore Δ1+Δ2=12ab(sinC1+sinC2)=12abk(2bcosA)\Delta_{1} + \Delta_{2} = \frac{1}{2}ab(\sin C_{1} + \sin C_{2}) = \frac{1}{2}abk(2b\cos A) =b2akcosA=b2sinAcosA= b^{2}ak\cos A = b^{2}\sin A\cos A = 12b2sin2A\frac{1}{2}b^{2}\sin 2A.