Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

In a ABC,\triangle ABC, 2 ac sin [12(AB+C)]\bigg [ \frac{1}{2} (A - B + C ) \bigg ] is equal to

A

a2+b2c2 a^2 + b^2 - c^2

B

c2+a2b2c^2 + a^2 - b^2

C

b2c2a2 b^2 - c^2 - a^2

D

c2a2b2c^2 - a^2 - b^2

Answer

c2+a2b2c^2 + a^2 - b^2

Explanation

Solution

We know that, A + B + C = 180 180^\circ \Rightarrow A + C - B = 180 - 2B Now, 2 ac sin [12(AB+C)]=2acsin(90B) \bigg [ \frac{1}{2} (A - B + C ) \bigg ] = 2ac \, sin \, (90^\circ - B) = 2a cos B = 2ac.(a2+c2b22ac=a2+c2b2 \frac{ 2 ac . (a^2 + c^2 - b^2 }{ 2ac} = a^2 + c^2 - b^2