Solveeit Logo

Question

Mathematics Question on Trigonometric Identities

In a ABC\triangle A B C if the sides are a=3,b=5a=3, b=5 and c=4c=4, then sinB2+cosB2\sin \frac{B}{2}+\cos \frac{B}{2} is equal to :

A

2\sqrt{2}

B

3+12\frac{\sqrt{3}+1}{2}

C

312\frac{\sqrt{3-1}}{2}

D

11

Answer

2\sqrt{2}

Explanation

Solution

We know cosB=a2+c2b22ac\cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}
cosB32+42522(3)(4)=9+16252(3)(4)=0\therefore \cos B \frac{3^{2}+4^{2}-5^{2}}{2(3)(4)}=\frac{9+16-25}{2(3)(4)}=0
B=90\Rightarrow B=90^{\circ}
sinB2+cosB2=sin45+cos45\therefore \sin \frac{B}{2}+\cos \frac{B}{2}=\sin 45^{\circ}+\cos 45^{\circ}
=12+12=2=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\sqrt{2}