Solveeit Logo

Question

Question: In a \(\triangle A B C\) if \(\frac { b + c } { 11 } = \frac { c + a } { 12 } = \frac { a + b } { ...

In a ABC\triangle A B C if b+c11=c+a12=a+b13\frac { b + c } { 11 } = \frac { c + a } { 12 } = \frac { a + b } { 13 } then cosC=\cos C =

A

75\frac { 7 } { 5 }

B

57\frac { 5 } { 7 }

C

1736\frac { 17 } { 36 }

D

1617\frac { 16 } { 17 }

Answer

57\frac { 5 } { 7 }

Explanation

Solution

b+c11=c+a12=a+b13\frac { b + c } { 11 } = \frac { c + a } { 12 } = \frac { a + b } { 13 } = λ\lambda (Let)

\therefore b+c=11λb + c = 11 \lambda ......(i)

c+a=12λc + a = 12 \lambda .......(ii)

and a+b=13λa + b = 13 \lambda .......(iii)

From (i) + (ii) + (iii), 2(a+b+c)=36λ2 ( a + b + c ) = 36 \lambda

\therefore a+b+c=18λa + b + c = 18 \lambda .......(iv)

Now subtract (i), (ii) and (iii) from (iv), a=7λ,b=6λ,c=5λa = 7 \lambda , b = 6 \lambda , c = 5 \lambda.

NowcosC=a2+b2c22ab\cos C = \frac { a ^ { 2 } + b ^ { 2 } - c ^ { 2 } } { 2 a b }

= (7λ)2+(6λ)2(5λ)22.7λ.6λ=49λ2+36λ225λ284λ2\frac { ( 7 \lambda ) ^ { 2 } + ( 6 \lambda ) ^ { 2 } - ( 5 \lambda ) ^ { 2 } } { 2.7 \lambda .6 \lambda } = \frac { 49 \lambda ^ { 2 } + 36 \lambda ^ { 2 } - 25 \lambda ^ { 2 } } { 84 \lambda ^ { 2 } }= 60λ284λ2=57\frac { 60 \lambda ^ { 2 } } { 84 \lambda ^ { 2 } } = \frac { 5 } { 7 }