Solveeit Logo

Question

Question: In a trapezium, the vector \(\overset{\rightarrow}{BC} = \lambda\overset{\rightarrow}{AD}.\) We will...

In a trapezium, the vector BC=λAD.\overset{\rightarrow}{BC} = \lambda\overset{\rightarrow}{AD}. We will then find that p=AC+BD\mathbf{p} = \overset{\rightarrow}{AC} + \overset{\rightarrow}{BD} is collinear with AD,\overset{\rightarrow}{AD}, If p=μAD,\mathbf{p} = \mu\overset{\rightarrow}{AD}, then

A

μ=λ+1\mu = \lambda + 1

B

λ=μ+1\lambda = \mu + 1

C

λ+μ=1\lambda + \mu = 1

D

μ=2+λ\mu = 2 + \lambda

Answer

μ=λ+1\mu = \lambda + 1

Explanation

Solution

We have, p=AC+BD=AC+BC+CD=AC+λAD+CD\mathbf{p} = \overset{\rightarrow}{AC} + \overset{\rightarrow}{BD} = \overset{\rightarrow}{AC} + \overset{\rightarrow}{BC} + \overset{\rightarrow}{CD} = \overset{\rightarrow}{AC} + \lambda\overset{\rightarrow}{AD} + \overset{\rightarrow}{CD}

=λAD+(AC+CD)=λAD+AD=(λ+1)AD.= \lambda\overset{\rightarrow}{AD} + (\overset{\rightarrow}{AC} + \overset{\rightarrow}{CD}) = \lambda\overset{\rightarrow}{AD} + \overset{\rightarrow}{AD} = (\lambda + 1)\overset{\rightarrow}{AD}.

Therefore p=μADμ=λ+1.\mathbf{p} = \mu\overset{\rightarrow}{AD} \Rightarrow \mu = \lambda + 1.