Solveeit Logo

Question

Mathematics Question on Probability

In a tournament, a team plays 10 matches with probabilities of winning and losing each match as 13\frac{1}{3} and 23\frac{2}{3}, respectively. Let xx be the number of matches that the team wins, and yy be the number of matches that the team loses. If the probability P(xy2)P(|x - y| \leq 2) is pp, then 39p3^9 p equals .

Answer

P(W)=13,  P(L)=23P(W) = \frac{1}{3}, \; P(L) = \frac{2}{3}.

Let x=x = number of matches the team wins, y=y = number of matches the team loses.
The conditions are: xy2andx+y=10.|x - y| \leq 2 \quad \text{and} \quad x + y = 10. This implies: xy=0,1,2,x,yN.|x - y| = 0, 1, 2, \quad x, y \in \mathbb{N}.

Case-I: xy=0    x=y|x - y| = 0 \implies x = y
From x+y=10x + y = 10, we have: x=y=5.x = y = 5. The probability for this case is: P(xy=0)=(105)(13)5(23)5.P(|x - y| = 0) = \binom{10}{5} \left(\frac{1}{3}\right)^5 \left(\frac{2}{3}\right)^5.

Case-II: xy=1    xy=±1|x - y| = 1 \implies x - y = \pm 1
For x=y+1x = y + 1: x+y=10    2y=9,  Not possible.x + y = 10 \implies 2y = 9, \; \text{Not possible.}

Case-III: xy=2    xy=±2|x - y| = 2 \implies x - y = \pm 2
For xy=2x - y = 2: x+y=10    x=6,  y=4.x + y = 10 \implies x = 6, \; y = 4. For xy=2x - y = -2: x+y=10    x=4,  y=6.x + y = 10 \implies x = 4, \; y = 6. The probability for this case is: P(xy=2)=(106)(13)6(23)4+(104)(13)4(23)6.P(|x - y| = 2) = \binom{10}{6} \left(\frac{1}{3}\right)^6 \left(\frac{2}{3}\right)^4 + \binom{10}{4} \left(\frac{1}{3}\right)^4 \left(\frac{2}{3}\right)^6.

Total Probability: p=(105)(13)5(23)5+(106)(13)6(23)4+(104)(13)4(23)6.p = \binom{10}{5} \left(\frac{1}{3}\right)^5 \left(\frac{2}{3}\right)^5 + \binom{10}{6} \left(\frac{1}{3}\right)^6 \left(\frac{2}{3}\right)^4 + \binom{10}{4} \left(\frac{1}{3}\right)^4 \left(\frac{2}{3}\right)^6. Simplify: 39p=13[(105)(13)5(23)5+(106)(13)6(23)4+(104)(13)4(23)6].3^9 p = \frac{1}{3} \left[\binom{10}{5} \left(\frac{1}{3}\right)^5 \left(\frac{2}{3}\right)^5 + \binom{10}{6} \left(\frac{1}{3}\right)^6 \left(\frac{2}{3}\right)^4 + \binom{10}{4} \left(\frac{1}{3}\right)^4 \left(\frac{2}{3}\right)^6\right].

Final Result: 39p=8288.3^9 p = 8288.