Question
Question: In a skew-symmetric matrix, the diagonal elements are all A) One B) Zero C) Different from eac...
In a skew-symmetric matrix, the diagonal elements are all
A) One
B) Zero
C) Different from each other
D) Non-zero
Solution
A square matrix A=[aij]is said to be skew symmetric matrix if
A′=−A or A=−A′, that is aij=−ajifor all possible values of i and j.
In transpose of a matrix, columns and rows are interchanged. Transpose denoted by: A′ (or AT). For example:
If A = {\left[ {\begin{array}{*{20}{c}}
3 \\\
{\sqrt 3 } \\\
0
\end{array}{\text{ }}\begin{array}{*{20}{c}}
5 \\\
1 \\\
{\dfrac{{ - 1}}{5}}
\end{array}} \right]_{3 \times 2}}
Then A' = {\left[ {\begin{array}{*{20}{c}}
3 \\\
5
\end{array}\begin{array}{*{20}{c}}
{\sqrt 3 } \\\
1
\end{array}\begin{array}{*{20}{c}}
0 \\\
{\dfrac{{ - 1}}{5}}
\end{array}} \right]_{2 \times 3}}
Complete step-by-step answer:
Step 1: Consider a square matrix A=[aij]
Where i: row number and j: column number.
Step 2: Condition for skew symmetric matrix:
A′=−A
Here,A′is transpose of matrix A
i.e. aij=−aji
Step 3: Now, if we put i=j,
We have, aii=−aii