Solveeit Logo

Question

Question: In a shotput event an athlete throws the shotput of mass 20 kg with an initial speed of \(45 ^ { \ci...

In a shotput event an athlete throws the shotput of mass 20 kg with an initial speed of 4545 ^ { \circ }from a height 3 m above ground. Assuming air resistance to be negligible and acceleration due to gravity to be 10 ms210 \mathrm {~ms} ^ { - 2 }, the kinetic energy of the shotput when it just reaches the ground will be:

A

2.5 J

B

5 J

C

525 J

D

640 J

Answer

640 J

Explanation

Solution

The situation is as shown in the figure.

Maximum height reached by the shotput is

Here, uu=2 ms1,θ=450\mathrm { u } = 2 \mathrm {~ms} ^ { - 1 } , \theta = 45 ^ { 0 }

Hmax=(2)sin24502×10=440=0.1 m\therefore \quad \mathrm { H } _ { \max } = \frac { ( 2 ) \sin ^ { 2 } 45 ^ { 0 } } { 2 \times 10 } = \frac { 4 } { 40 } = 0.1 \mathrm {~m}

Potential energy at

H = 3g (3 + 0.1)

=(20 kg)(10 ms2)3.1 m=620 J= ( 20 \mathrm {~kg} ) \left( 10 \mathrm {~ms} ^ { - 2 } \right) 3.1 \mathrm {~m} = 620 \mathrm {~J}

Kinetic energy at

=12×20×(2×12)2=402=20 J= \frac { 1 } { 2 } \times 20 \times \left( 2 \times \frac { 1 } { \sqrt { 2 } } \right) ^ { 2 } = \frac { 40 } { 2 } = 20 \mathrm {~J}

Total mechanical energy at H = 620 J + 20 J = 640 J

Let KG\mathrm { K } _ { \mathrm { G } } is the kinetic energy at G.

Potential energy at G = 0

Total mechanical energy at G=KG+0\mathrm { G } = \mathrm { K } _ { \mathrm { G } } + 0

By the law of conservation of mechanical energy between H and G is

620 J+20 J=KG+0620 \mathrm {~J} + 20 \mathrm {~J} = \mathrm { K } _ { \mathrm { G } } + 0

KG=640 J\therefore \mathrm { K } _ { \mathrm { G } } = 640 \mathrm {~J}