Solveeit Logo

Question

Question: In a series LR circuit, power of 400W is dissipated from a source of 250 V, 50 Hz. The power factor ...

In a series LR circuit, power of 400W is dissipated from a source of 250 V, 50 Hz. The power factor of the circuit is 0.8. In order to bring the power factor to unity, a capacitor of value C is added in series to the L and R. Taking the value of C as (n / 3π) μF, then the value of n is ______.

Answer

400

Explanation

Solution

Solution:

  1. Determine R and XL:

    • Given: Source voltage, V=250  VV=250\;V, power P=400  WP=400\;W, and power factor cosϕ=0.8\cos\phi=0.8.
    • The current, I=PVcosϕ=400250×0.8=2  A.I=\frac{P}{V\cos \phi}=\frac{400}{250\times0.8}=2\;A.
    • The impedance magnitude, Z=VI=2502=125  Ω.|Z|=\frac{V}{I}=\frac{250}{2}=125\;\Omega.
    • Since cosϕ=RZ\cos\phi=\frac{R}{|Z|}, we get R=0.8×125=100  Ω.R=0.8\times125=100\;\Omega.
    • Now, Z=R2+XL21252=1002+XL2.|Z|=\sqrt{R^2+X_L^2}\Rightarrow 125^2=100^2+X_L^2. Thus, XL=12521002=1562510000=5625=75  Ω.X_L=\sqrt{125^2-100^2}=\sqrt{15625-10000}=\sqrt{5625}=75\;\Omega.
  2. Capacitor for PF Correction:

    To correct the power factor to unity, the total reactive component must be zero:

    XLXC=0XC=XL=75  Ω,X_L - X_C = 0 \Rightarrow X_C = X_L = 75\;\Omega,

    where

    XC=12πfC.X_C=\frac{1}{2\pi f C}.

    Hence,

    C=12πfXC=12π×50×75=17500π  F.C=\frac{1}{2\pi f X_C}=\frac{1}{2\pi\times50\times75}=\frac{1}{7500\pi}\;F.
  3. Expressing in the Given Form:

    The capacitor is given as

    C=n3π  μF=n3π×106  F.C=\frac{n}{3\pi}\;\mu F=\frac{n}{3\pi}\times10^{-6}\;F.

    Equate this with the computed value:

    n3π×106=17500π.\frac{n}{3\pi}\times10^{-6}=\frac{1}{7500\pi}.

    Cancel π\pi and solve for nn:

    n×1063=17500n×106=37500=12500.\frac{n\times10^{-6}}{3}=\frac{1}{7500} \quad\Rightarrow\quad n\times10^{-6}=\frac{3}{7500}=\frac{1}{2500}.

    Thus,

    n=1062500=400.n=\frac{10^{6}}{2500}=400.

Minimal Explanation:

  • Compute current I=400/(250×0.8)=2  AI=400/(250\times0.8)=2\;A.
  • Find impedance Z=250/2=125  ΩZ=250/2=125\;\Omega and R=0.8×125=100  ΩR=0.8\times125=100\;\Omega.
  • Determine XL=12521002=75  ΩX_L=\sqrt{125^2-100^2}=75\;\Omega.
  • For unity PF, set XC=XLX_C=X_L leading to C=1/(2π×50×75)=1/(7500π)  FC=1/(2\pi\times50\times75)=1/(7500\pi)\;F.
  • Equate to given form n/(3π)μFn/(3\pi)\mu F to find n=400n=400.