Solveeit Logo

Question

Physics Question on Alternating current

In a series LCRLCR circuit an alternating emf(v)emf \,(v) and current (i)\,(i) are given by the equation v=v0sinωt,i=i0sin(ωt+π3)v = v_0 \sin \omega t, i = i_0 \sin \left( \omega t + \frac{\pi}{3} \right) The average power dissipated in the circuit over a cycle of ACAC is

A

V0i02\frac{V_0 i_0}{2}

B

V0i04\frac{V_0 i_0}{4}

C

32V0i0\frac{\sqrt{3}}{2} V_0 i_0

D

Zero

Answer

V0i04\frac{V_0 i_0}{4}

Explanation

Solution

V=V0sinωtV=V_{0} \sin\, \omega t
I=I0sin(ωt+π3)I=I_{0} \sin \left(\omega t+\frac{\pi}{3}\right)
The average dissipated power in AC circuit.
P=VrmsIrmscosϕP= V_{ rms } I_{ rms } \cos \phi
Here, Vrms=V02V_{ rms }= \frac{V_{0}}{\sqrt{2}}
Irms=I02I_{ rms }=\frac{I_{0}}{\sqrt{2}}
ϕ=π3\Rightarrow \phi=\frac{\pi}{3}
P=V02×I02×cosπ3P= \frac{V_{0}}{\sqrt{2}} \times \frac{I_{0}}{\sqrt{2}} \times \cos \frac{\pi}{3}
=V0I02×cos60=\frac{V_{0} I_{0}}{2} \times \cos\, 60^{\circ}
=V0I02×12=V0I04= \frac{V_{0} I_{0}}{2} \times \frac{1}{2}=\frac{V_{0} I_{0}}{4}