Solveeit Logo

Question

Question: In a scattering experiment, a particle of mass $2m$ collides with another particle of mass $m$, whic...

In a scattering experiment, a particle of mass 2m2m collides with another particle of mass mm, which is initially at rest. Assuming the collision to be perfectly elastic, the maximum angular deviation θ\theta of the heavier particle, as shown in the figure, in radians is:

A

π\pi

B

tan1(12)\tan^{-1}(\frac{1}{2})

C

π3\frac{\pi}{3}

D

π6\frac{\pi}{6}

Answer

π6\frac{\pi}{6}

Explanation

Solution

The problem involves an elastic collision between two particles. To find the maximum angular deviation θ\theta of the heavier particle, we can use the formula derived from conservation of momentum and kinetic energy.

Method 1: Using the center of mass frame

  1. Velocity of the Center of Mass (VCMV_{CM}): VCM=m1u1+m2u2m1+m2=2mu12m+m=23u1V_{CM} = \frac{m_1 u_1 + m_2 u_2}{m_1 + m_2} = \frac{2m u_1}{2m + m} = \frac{2}{3} u_1

  2. Velocities in the Center of Mass (CM) Frame: u1=u1VCM=u123u1=13u1u_1' = u_1 - V_{CM} = u_1 - \frac{2}{3}u_1 = \frac{1}{3}u_1 u2=u2VCM=023u1=23u1u_2' = u_2 - V_{CM} = 0 - \frac{2}{3}u_1 = -\frac{2}{3}u_1

  3. Relating Lab Frame and CM Frame Velocities: v1=v1+VCM\vec{v_1} = \vec{v_1^{*'}} + \vec{V_{CM}} v1x=VCM+v1cosϕ=23u1+13u1cosϕv_{1x} = V_{CM} + v_1^{*'} \cos\phi = \frac{2}{3}u_1 + \frac{1}{3}u_1 \cos\phi v1y=v1sinϕ=13u1sinϕv_{1y} = v_1^{*'} \sin\phi = \frac{1}{3}u_1 \sin\phi

  4. Scattering Angle of Incident Particle (θ1\theta_1): tanθ1=v1yv1x=13u1sinϕ23u1+13u1cosϕ=sinϕ2+cosϕ\tan\theta_1 = \frac{v_{1y}}{v_{1x}} = \frac{\frac{1}{3}u_1 \sin\phi}{\frac{2}{3}u_1 + \frac{1}{3}u_1 \cos\phi} = \frac{\sin\phi}{2 + \cos\phi}

  5. Maximizing θ1\theta_1: d(tanθ1)dϕ=2cosϕ+1(2+cosϕ)2=0    cosϕ=12\frac{d(\tan\theta_1)}{d\phi} = \frac{2\cos\phi + 1}{(2 + \cos\phi)^2} = 0 \implies \cos\phi = -\frac{1}{2} sinϕ=±1(12)2=±32\sin\phi = \pm\sqrt{1 - (-\frac{1}{2})^2} = \pm\frac{\sqrt{3}}{2}. tanθ1=322+(12)=3232=33=13\tan\theta_1 = \frac{\frac{\sqrt{3}}{2}}{2 + (-\frac{1}{2})} = \frac{\frac{\sqrt{3}}{2}}{\frac{3}{2}} = \frac{\sqrt{3}}{3} = \frac{1}{\sqrt{3}} θ1=tan1(13)=π6\theta_1 = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} radians.

Method 2: Using the general formula for maximum scattering angle

θmax=sin1(m2m1)=sin1(m2m)=sin1(12)=π6\theta_{max} = \sin^{-1}\left(\frac{m_2}{m_1}\right) = \sin^{-1}\left(\frac{m}{2m}\right) = \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6} radians.

Therefore, the maximum angular deviation θ\theta of the heavier particle is π6\frac{\pi}{6} radians.