Solveeit Logo

Question

Question: In a right angled triangle the hypotenuse is 2 \(\sqrt { 2 }\) times the length of the perpendicula...

In a right angled triangle the hypotenuse is 2 2\sqrt { 2 } times the length of the perpendicular drawn from the opposite vertex on the hypotenuse. Then the other two angles are

A

(π3,π6)\left( \frac { \pi } { 3 } , \frac { \pi } { 6 } \right)

B

(π4,π4)\left( \frac { \pi } { 4 } , \frac { \pi } { 4 } \right)

C

(π8,3π8)\left( \frac { \pi } { 8 } , \frac { 3 \pi } { 8 } \right)

D

(π12,5π12)\left( \frac { \pi } { 12 } , \frac { 5 \pi } { 12 } \right)

Answer

(π8,3π8)\left( \frac { \pi } { 8 } , \frac { 3 \pi } { 8 } \right)

Explanation

Solution

We have CD = p and AB = 2 2\sqrt { 2 } p.

Clearly p = a cosθ = b

sinθ

Now, a2 + b2 =

(22p)2( 2 \sqrt { 2 } p ) ^ { 2 }

p2(1sin2θ+1cos2θ)=8p2p ^ { 2 } \left( \frac { 1 } { \sin ^ { 2 } \theta } + \frac { 1 } { \cos ^ { 2 } \theta } \right) = 8 p ^ { 2 }

⇒ sin 2θ = ± 12\frac { 1 } { \sqrt { 2 } }

⇒ sin2θ =12\frac { 1 } { \sqrt { 2 } }

(since 0<θ< 90°)

⇒ 2θ = π4\frac { \pi } { 4 } ⇒ θ = π8\frac { \pi } { 8 }

⇒ the other angle is

π2\frac { \pi } { 2 } - θ =π2\frac { \pi } { 2 } - π8\frac { \pi } { 8 } = 3π8\frac { 3 \pi } { 8 }

.