Question
Question: In a right angled triangle the hypotenuse is 2 \(\sqrt { 2 }\) times the length of the perpendicula...
In a right angled triangle the hypotenuse is 2 2 times the length of the perpendicular drawn from the opposite vertex on the hypotenuse. Then the other two angles are
A
(3π,6π)
B
(4π,4π)
C
(8π,83π)
D
(12π,125π)
Answer
(8π,83π)
Explanation
Solution
We have CD = p and AB = 2 2 p.
Clearly p = a cosθ = b
sinθ
Now, a2 + b2 =
(22p)2
⇒
p2(sin2θ1+cos2θ1)=8p2
⇒ sin 2θ = ± 21
⇒ sin2θ =21
(since 0<θ< 90°)
⇒ 2θ = 4π ⇒ θ = 8π![]() |
⇒ the other angle is
2π - θ =2π - 8π = 83π
.