Solveeit Logo

Question

Question: In a right angled triangle, the hypotenuse is \[2\sqrt 2 \] times the length of the perpendicular dr...

In a right angled triangle, the hypotenuse is 222\sqrt 2 times the length of the perpendicular drawn from the opposite vertex on the hypotenuse then the acute angles of the triangle.

Explanation

Solution

Let us name the right angles triangle as ABC, right angle situated at B. First, we consider area of triangle as half the product of two sides containing the right angle and next we consider we consider area of triangle as half the product of hypotenuse and the perpendicular drawn from the opposite vertex on the hypotenuse. From this we get two equations for the area of the triangle, we need to equate both. From the formula of hypotenuse, a2+c2=b2{a^2} + {c^2} = {b^2} we will have equations in the sides of the triangle .We simplify both and get the value of both sides. Finally, we have two sides so we divide the both to get the tangent of an appropriate side angle. From here we can find the value of acute angles of a triangle.

Complete answer:
Let us consider the value of side AB as ‘c’, BC as ‘a’, CA as ’b’.
Hypotenuse=CA=b
We consider BD to be perpendicularly drawn from the opposite vertex on the hypotenuse whose length is ‘x’, as shown in figure.

From the question, b=22×xb = 2\sqrt 2 \times x.
Area of triangle= 12ac\dfrac{1}{2}ac………….(1)
Area of triangle=12b×x\dfrac{1}{2}b \times x
=1222x×x =22x22  = \dfrac{1}{2}2\sqrt 2 x \times x \\\ = \dfrac{{2\sqrt 2 {x^2}}}{2} \\\
Area of triangle=22x22\dfrac{{2\sqrt 2 {x^2}}}{2} …………(2)
By equating (1) and (2)

12ac=22x22 ac=22x2........(3)  \dfrac{1}{2}ac = \dfrac{{2\sqrt 2 {x^2}}}{2} \\\ \Rightarrow ac = 2\sqrt 2 {x^2}........(3) \\\

By applying hypotenuse theorem,
a2+c2=b2{a^2} + {c^2} = {b^2}

a2+c2=(22x)2 a2+c2=8x2........(4)  {a^2} + {c^2} = {\left( {2\sqrt 2 x} \right)^2} \\\ \Rightarrow {a^2} + {c^2} = 8{x^2}........(4) \\\

From (3), a=22x2ca = \dfrac{{2\sqrt 2 {x^2}}}{c}
By substituting value of ‘a’ in (4),

(22x2c)2+c2=8x2 8x4c2+c2=8x2 8x4+c4=8x2c2 c48x2c2+8x4=0   {\left( {\left. {\dfrac{{2\sqrt 2 {x^2}}}{c}} \right)} \right.^2} + {c^2} = 8{x^2} \\\ \Rightarrow \dfrac{{8{x^4}}}{{{c^2}}} + {c^2} = 8{x^2} \\\ \Rightarrow 8{x^4} + {c^4} = 8{x^2}{c^2} \\\ \Rightarrow {c^4} - 8{x^2}{c^2} + 8{x^4} = 0 \\\ \\\

It is a quadratic equation in c2{c^2}.
So we can use formula b±b24ac2a\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} to find c

c2=8x2±(8x2)24×8x42×1 c2=8x2±64x432x42 c2=2×(4x2±16x48x4)2 c2=4x2±8x4 c=4x2±8x4  {c^2} = \dfrac{{8{x^2} \pm \sqrt {{{(8{x^2})}^2} - 4 \times 8{x^4}} }}{{2 \times 1}} \\\ \Rightarrow {c^2} = \dfrac{{8{x^2} \pm \sqrt {64{x^4} - 32{x^4}} }}{2} \\\ \Rightarrow {c^2} = \dfrac{{2 \times (4{x^2} \pm \sqrt {16{x^4} - 8{x^4}} )}}{2} \\\ \Rightarrow {c^2} = 4{x^2} \pm \sqrt {8{x^4}} \\\ \Rightarrow c = \sqrt {4{x^2} \pm \sqrt {8{x^4}} } \\\

We take c=4x222x2c = \sqrt {4{x^2} - 2\sqrt 2 {x^2}} as if c=4x2+22x2c = \sqrt {4{x^2} + 2\sqrt 2 {x^2}} is taken then equation 4 is not satisfied.
For finding the value of angle ‘C’,
tanc=ca   \tan c = \dfrac{c}{a} \\\ \\\
tanC=c(22x2c) tanC=c222x2 tanC=(4x222x2)222x2 tanC=4x222x222x2 tanC=22x2(21)22x2 tanC=21   \tan C = \dfrac{c}{{\left( {\left. {\dfrac{{2\sqrt 2 {x^2}}}{c}} \right)} \right.}} \\\ \Rightarrow \tan C = \dfrac{{{c^2}}}{{2\sqrt 2 {x^2}}} \\\ \Rightarrow \tan C = \dfrac{{\left( {{{\left. {\sqrt {4{x^2} - 2\sqrt 2 {x^2}} } \right)}^2}} \right.}}{{2\sqrt 2 {x^2}}} \\\ \Rightarrow \tan C = \dfrac{{4{x^2} - 2\sqrt 2 {x^2}}}{{2\sqrt 2 {x^2}}} \\\ \Rightarrow \tan C = \dfrac{{2\sqrt 2 {x^2}(\sqrt 2 - 1)}}{{2\sqrt 2 {x^2}}} \\\ \Rightarrow \tan C = \sqrt 2 - 1 \\\ \\\
Hence,

C=tan1(21) C=22.5  C = {\tan ^{ - 1}}\left( {\sqrt 2 - 1} \right) \\\ \Rightarrow C = {22.5^ \circ } \\\

In the triangle ABC,
A+B+C=180 A+C+90=180 A+C=90  A + B + C = {180^ \circ } \\\ \Rightarrow A + C + {90^ \circ } = {180^ \circ } \\\ \Rightarrow A + C = {90^ \circ } \\\
A=9022.5=67.5A = {90^ \circ } - {22.5^ \circ } = {67.5^ \circ }
So the acute angles of the right angled triangle are22.5,67.5{22.5^ \circ },{67.5^ \circ }.

Note:
In this question we use the concept of area of the triangle, that is area of triangle remains same irrespective of the side we choose in the formula. Hypotenuse side is the special condition for the right angled triangle. This condition makes the right angled triangle special and different from other triangles.