Solveeit Logo

Question

Question: In a right-angled triangle ABC, if the hypotenuse \(AB=p\) , then what \[\overrightarrow{AB}\cdot \o...

In a right-angled triangle ABC, if the hypotenuse AB=pAB=p , then what ABAC+BABC+CACB\overrightarrow{AB}\cdot \overrightarrow{AC}+\overrightarrow{BA}\cdot \overrightarrow{BC}+\overrightarrow{CA}\cdot \overrightarrow{CB} equals to
A. pp
B. p2{{p}^{2}}
C. 2p22{{p}^{2}}
D. p22\dfrac{{{p}^{2}}}{2}

Explanation

Solution

We have to find the value of ABAC+BABC+CACB\overrightarrow{AB}\cdot \overrightarrow{AC}+\overrightarrow{BA}\cdot \overrightarrow{BC}+\overrightarrow{CA}\cdot \overrightarrow{CB} . From, the figure, ACCB\overrightarrow{AC}\bot \overrightarrow{CB} , CACB\overrightarrow{CA}\bot \overrightarrow{CB} and using the rule of vectors, we will get CACB=0\overrightarrow{CA}\cdot \overrightarrow{CB}=0 . Substituting these values in ABAC+BABC+CACB\overrightarrow{AB}\cdot \overrightarrow{AC}+\overrightarrow{BA}\cdot \overrightarrow{BC}+\overrightarrow{CA}\cdot \overrightarrow{CB} and after some rearrangements, use the using the triangle law of vector addition (AB=AC+CB)\left( \overrightarrow{AB}=\overrightarrow{AC}+\overrightarrow{CB} \right) and the property aa=a2\overrightarrow{a\cdot }\overrightarrow{a}={{\left| \overrightarrow{a} \right|}^{2}} , the required value will be obtained.

Complete step by step answer:
We have to find the value of ABAC+BABC+CACB\overrightarrow{AB}\cdot \overrightarrow{AC}+\overrightarrow{BA}\cdot \overrightarrow{BC}+\overrightarrow{CA}\cdot \overrightarrow{CB} .

From the figure,
ACCB\overrightarrow{AC}\bot \overrightarrow{CB}
And CACB\overrightarrow{CA}\bot \overrightarrow{CB}
We know that ab=abcosθ\overrightarrow{a}\cdot \overrightarrow{b}=\left| \overrightarrow{a} \right|\cdot \left| \overrightarrow{b} \right|\cdot \cos \theta
CACB=CACBcosθ\Rightarrow \overrightarrow{CA}\cdot \overrightarrow{CB}=\left| \overrightarrow{CA} \right|\cdot \left| \overrightarrow{CB} \right|\cos \theta
This can be written as
CACBCACB=cosθ\dfrac{\overrightarrow{CA}\cdot \overrightarrow{CB}}{\left| \overrightarrow{CA} \right|\cdot \left| \overrightarrow{CB} \right|}=\cos \theta
Given that the triangle is a right-angled triangle. Hence,
CACBCACB=cos90=0\dfrac{\overrightarrow{CA}\cdot \overrightarrow{CB}}{\left| \overrightarrow{CA} \right|\cdot \left| \overrightarrow{CB} \right|}=\cos 90=0
This can be written as
CACB=0...(i)\overrightarrow{CA}\cdot \overrightarrow{CB}=0...(i)
Let us consider ABAC+BABC+CACB\overrightarrow{AB}\cdot \overrightarrow{AC}+\overrightarrow{BA}\cdot \overrightarrow{BC}+\overrightarrow{CA}\cdot \overrightarrow{CB}
Substituting (i)(i) in the above equation, we will get
ABAC+BABC+0\overrightarrow{AB}\cdot \overrightarrow{AC}+\overrightarrow{BA}\cdot \overrightarrow{BC}+0
=ABAC+BABC=\overrightarrow{AB}\cdot \overrightarrow{AC}+\overrightarrow{BA}\cdot \overrightarrow{BC}
We know that AB=BA\overrightarrow{AB}=-\overrightarrow{BA} . So the above equation can be written as
ABACABBC\overrightarrow{AB}\cdot \overrightarrow{AC}-\overrightarrow{AB}\cdot \overrightarrow{BC}
Taking AB\overrightarrow{AB} common, we will get
AB(ACBC)\overrightarrow{AB}\cdot \overrightarrow{(AC}-\overrightarrow{BC})
We know that BC=CB\overrightarrow{BC}=-\overrightarrow{CB} . So the above equation can be written as
AB(AC+CB)...(ii)\overrightarrow{AB}\cdot \overrightarrow{(AC}+\overrightarrow{CB})...(ii)
Using triangle law of vector addition, that is, for a triangle shown below, A=B+C\overrightarrow{A}=\overrightarrow{B}+\overrightarrow{C}

Similarly, we can express the same for the given triangle. That is,
AB=AC+CB\overrightarrow{AB}=\overrightarrow{AC}+\overrightarrow{CB}
Hence, (ii)(ii) can be written as
ABAB\overrightarrow{AB}\cdot \overrightarrow{AB}
We know that aa=a2\overrightarrow{a\cdot }\overrightarrow{a}={{\left| \overrightarrow{a} \right|}^{2}}
Hence, ABAB=AB2\overrightarrow{AB}\cdot \overrightarrow{AB}={{\left| \overrightarrow{AB} \right|}^{2}}
=p2=p2={{\left| p \right|}^{2}}={{p}^{2}}

So, the correct answer is “Option B”.

Note: The students can make an error if they don’t know how to write the dot product of two vectors. Also, the property of vectors and triangular law of vector addition is also very important to solve this question and hence need to be very thorough in this. There can also be a chance to make error in the equation CACBCACB=cosθ\dfrac{\overrightarrow{CA}\cdot \overrightarrow{CB}}{\left| \overrightarrow{CA} \right|\cdot \left| \overrightarrow{CB} \right|}=\cos \theta by writing sinθ\sin \theta instead of cosθ\cos \theta .