Question
Question: In a right angle triangle ABC, right-angled at B, if \(\tan A = 1\) then verify that \( 2\sin A\cos ...
In a right angle triangle ABC, right-angled at B, if tanA=1 then verify that 2sinAcosA=1.
Solution
Hint: Here, we will verify 2sinAcosA=1by finding the values of sinA and cosA with the given tanA value.
Complete step-by-step answer:
Given,
In a right angle triangle ABC, right-angled at B i.e..,∠ABC=900
And it is also given that tanA=1i.e.., ABBC=1[∵tanθ=Adjopp].
Therefore, BC=AB
Let, AB=BC=k where ‘k’ is a positive number.
As we know that AC2=AB2+BC2[∵Pythagoras Theorem]
Now let us substitute the value of AB, BC as ‘k’, we get
$
\Rightarrow A{C^2} = {k^2} + {k^2} \\
\Rightarrow A{C^2} = 2{k^2} \\
\Rightarrow AC = \sqrt 2 k \\
Now,letusfindthevalueof\sin Aand\cos A. \Rightarrow \sin A = \dfrac{{opp}}{{hyp}} = \dfrac{{BC}}{{AC}} = \dfrac{k}{{\sqrt 2 k}} = \dfrac{1}{{\sqrt 2 }} \Rightarrow \cos A = \dfrac{{adj}}{{hyp}} = \dfrac{{AB}}{{AC}} = \dfrac{k}{{\sqrt 2 k}} = \dfrac{1}{{\sqrt 2 }}Now,weneedtoverify2\sin A\cos A = 1.Letussubstitutetheobtained\sin Aand\cos Avalues.
\Rightarrow 2\sin A.\cos A = 1 \\
\Rightarrow 2(\dfrac{1}{{\sqrt 2 }})(\dfrac{1}{{\sqrt 2 }}) = 1 \\
\Rightarrow \dfrac{2}{2} = 1 \\
\Rightarrow 1 = 1[\therefore L.H.S = R.H.S] \\
Therefore,weverifiedthatthevalueof2\sin A\cos A$ is 1.
Note: The alternate approach to solve the given problem is by using the formula of double angle i.e..,2sinAcosA=sin2A=1+tan2A2tanA.