Solveeit Logo

Question

Question: In a right angle triangle ABC, right-angled at B, if \(\tan A = 1\) then verify that \( 2\sin A\cos ...

In a right angle triangle ABC, right-angled at B, if tanA=1\tan A = 1 then verify that 2sinAcosA=1 2\sin A\cos A = 1.

Explanation

Solution

Hint: Here, we will verify 2sinAcosA=12\sin A\cos A = 1by finding the values of sinA\sin A and cosA\cos A with the given tanA\tan A value.

Complete step-by-step answer:
Given,
In a right angle triangle ABC, right-angled at B i.e..,ABC=900\angle ABC = {90^0}

And it is also given that tanA=1\tan A = 1i.e.., BCAB=1[tanθ=oppAdj]\dfrac{{BC}}{{AB}} = 1[\because \tan \theta = \dfrac{{opp}}{{Adj}}].
Therefore, BC=ABBC = AB
Let, AB=BC=kAB = BC = k where ‘k’ is a positive number.
As we know that AC2=AB2+BC2[A{C^2} = A{B^2} + B{C^2}[\because Pythagoras Theorem]
Now let us substitute the value of AB, BC as ‘k’, we get
$

\Rightarrow A{C^2} = {k^2} + {k^2} \\
\Rightarrow A{C^2} = 2{k^2} \\
\Rightarrow AC = \sqrt 2 k \\
Now,letusfindthevalueof Now, let us find the value of\sin Aandand\cos A.. \Rightarrow \sin A = \dfrac{{opp}}{{hyp}} = \dfrac{{BC}}{{AC}} = \dfrac{k}{{\sqrt 2 k}} = \dfrac{1}{{\sqrt 2 }} \Rightarrow \cos A = \dfrac{{adj}}{{hyp}} = \dfrac{{AB}}{{AC}} = \dfrac{k}{{\sqrt 2 k}} = \dfrac{1}{{\sqrt 2 }}Now,weneedtoverify Now, we need to verify2\sin A\cos A = 1.Letussubstitutetheobtained.Let us substitute the obtained\sin Aandand\cos Avalues.values.
\Rightarrow 2\sin A.\cos A = 1 \\
\Rightarrow 2(\dfrac{1}{{\sqrt 2 }})(\dfrac{1}{{\sqrt 2 }}) = 1 \\
\Rightarrow \dfrac{2}{2} = 1 \\
\Rightarrow 1 = 1[\therefore L.H.S = R.H.S] \\
Therefore,weverifiedthatthevalueof Therefore, we verified that the value of2\sin A\cos A$ is 1.

Note: The alternate approach to solve the given problem is by using the formula of double angle i.e..,2sinAcosA=sin2A=2tanA1+tan2A2\sin A\cos A = \sin 2A = \dfrac{{2\tan A}}{{1 + {{\tan }^2}A}}.