Solveeit Logo

Question

Question: In a regular hexagon ABCDEF, \(\overset{\rightarrow}{AE} =\)...

In a regular hexagon ABCDEF, AE=\overset{\rightarrow}{AE} =

A

2a3b2\mathbf{a} - 3\mathbf{b}

B

AC+AFAB\overset{\rightarrow}{AC} + \overset{\rightarrow}{AF} - \overset{\rightarrow}{AB}

C

AC+ABAF\overset{\rightarrow}{AC} + \overset{\rightarrow}{AB} - \overset{\rightarrow}{AF}

D

None of these

Answer

AC+AFAB\overset{\rightarrow}{AC} + \overset{\rightarrow}{AF} - \overset{\rightarrow}{AB}

Explanation

Solution

Obviously, AE=AC+CD+DE\overset{\rightarrow}{AE} = \overset{\rightarrow}{AC} + \overset{\rightarrow}{CD} + \overset{\rightarrow}{DE}

=AC+AFAB= \overset{\rightarrow}{AC} + \overset{\rightarrow}{AF} - \overset{\rightarrow}{AB}, {CD=AFandDE=AB}\left\{ \because\overset{\rightarrow}{CD} = \overset{\rightarrow}{AF}\text{and}\overset{\rightarrow}{DE} = - \overset{\rightarrow}{AB} \right\}.