Solveeit Logo

Question

Physics Question on electrostatic potential and capacitance

In a region, the potential is represented by V(x, y, z) = 6x - 8xy - 8y + 6yz, where VV is in volts and x,y,zx, y, z are in metres. The electric force experienced by a charge of 22 coulomb situated at point (1,1,1)(1, 1, 1) is

A

65N6 \sqrt 5 \,N

B

30 N

C

24 N

D

435N4 \sqrt 35 \,N

Answer

435N4 \sqrt 35 \,N

Explanation

Solution

Here, V(x, y, z) = 6x - 8xy - 8y + 6yz
The x, y and z components of electric field are
Ex=Vx=x(6x8xy8y+6yz)E_x = - \frac{\partial V}{\partial x} = - \frac{\partial}{\partial x} (6x - 8xy - 8y + 6yz)
=(68y)=6+8y\, \, \, \, \, \, = -(6 - 8y) = -6 + 8y
Ey=Vy=y(6x8xy8y+6yz)E_y = - \frac{\partial V}{\partial y} = - \frac{\partial}{\partial y} (6x - 8xy - 8y + 6yz)
=(8x8+6z)=8x+86z\, \, \, \, \, \, \, = -(-8x - 8 + 6z) = 8x + 8 - 6z
Ez=Vz=z(6x8xy8y+6yz)=6yE_z = - \frac{\partial V}{\partial z} = - \frac{\partial}{\partial z} (6x - 8xy - 8y + 6yz) = - 6y
E=Exi^+Eyj^+Ezk^\overrightarrow {E} = E_x \widehat {i} + E_y \widehat {j} + E_z \widehat {k}
=(6+8y)i^+(8x+86z)j^6yk^= (-6 + 8y) \widehat {i} + (8x + 8 - 6z) \widehat{j} - 6y \widehat {k}
At point (1, 1, 1)
E=(6+8)i^+(8+86)j^6k^\overrightarrow {E} = (-6 + 8) \widehat {i} + (8 + 8 - 6) \widehat {j} - 6 \widehat {k}
=2i^+10j^6k^= 2 \widehat {i} + 10 \widehat {j} - 6 \widehat {k}
The magnitude of electric field E\overrightarrow {E} is
E=Ex2+Ey2+Ez2=(2)2+(10)2+(6)2\overrightarrow {E} = \sqrt {E_x^2 + E_y^2 + E_z^2} = \sqrt {(2)^2 + (10)^2 + (-6)^2}
=140=235NC1= \sqrt 140 = 2 \sqrt 35\, N\, C^{-1}
Electric force experienced by the charge
F=qE=2C×235NC1=435NF = qE = 2 \,C \times 2 \sqrt 35\, N \,C^{-1} = 4 \sqrt 35\, N