Solveeit Logo

Question

Physics Question on Nuclei

In a radioactive sample, 1940K^{40}_{19} K nuclei either decay into stable 2040Ca^{40}_{20} Ca nuclei with decay constant 4.5×10104.5 \times 10^{-10} per year or into stable 1840Ar^{40}_{18}\, Ar nuclei with decay constant 0.5×10100.5 \times 10^{-10} per year. Given that in this sample all the stable 2040Ca^{40}_{20}Ca and 1840^{40}_{18} ArAr nuclei are produced by the 1940K^{40}_{19}K nuclei only. In time t×109t \times 10^{9} years, if the ratio of the sum of stable 2040Ca^{40}_{20}\,Ca and 1840Ar^{40}_{18}\, Ar nuclei to the radioactive 1940K^{40}_{19}\, K nuclei is 9999, the value of t will be : [Given ln10=2.3ln\, 10\, =\, 2.3]

A

9.2

B

1.15

C

4.6

D

2.3

Answer

9.2

Explanation

Solution

dNdt=λ1Nλ2N\therefore\frac{dN}{dt}=-\lambda_{1}N-\lambda_{2}N
dNdT=(λ1+λ2)dt\therefore \frac{dN}{dT}=-\left(\lambda_{1}+\lambda_{2}\right)dt
N=N0e(λ1+λ2)t\Rightarrow N=N_{0}e^{-\left(\lambda_{1}+\lambda_{2}\right)t}
For N=N099N = N_0 - 99% of N0=0.01N0N_0 = 0.01 N_0
We get
t=In100λ1+λ2=2.3×25×1010t=\frac{In\,100}{\lambda_{1}+\lambda_{2}}=\frac{2.3\times2}{5\times10^{-10}}
t=9.2×109t=9.2\times10^{9} year