Solveeit Logo

Question

Question: In a radioactive decay process \(A\) decays to \(B\) . Two graphs of the number of nuclei of \(A\) a...

In a radioactive decay process AA decays to BB . Two graphs of the number of nuclei of AA and BB versus time are given. Then choose the correct option(s)

A. t2t1=4sec{{t}_{2}}-{{t}_{1}}=4\sec
B. t2t1=2sec{{t}_{2}}-{{t}_{1}}=2\sec
C. t1=2log25sec{{t}_{1}}=2{{\log }_{2}}5\sec
D. t2=log2100sec{{t}_{2}}={{\log }_{2}}100\sec

Explanation

Solution

Complete step by step answer:
We can use the Exponential law of radioactive disintegration here as the nuclei AA is disintegrated into nuclei BB , which is expressed as
N=N0eλtN={{N}_{0}}{{e}^{-\lambda t}}
Now, from the graph for nuclei AA , we can obtain that at time t=6sect=6sec , the number of disintegrated nuclei is N=N08N=\dfrac{N_0}{8} . Substituting this values in the equation of law of disintegration,
N08=N0eλ(6)\dfrac{{{N}_{0}}}{8}={{N}_{0}}{{e}^{-\lambda (6)}}
18=eλ(6)\Rightarrow \dfrac{1}{8}={{e}^{-\lambda (6)}}
Applying natural log on both sides,
ln(18)=lne6λ\ln \left( \dfrac{1}{8} \right)=\ln {{e}^{-6\lambda }}

From the logarithmic theorems, we know ln(1b)=lnb\ln \left( \dfrac{1}{b} \right)=-\ln b and lnaab=b{{\ln }_{a}}{{a}^{b}}=b . Applying these theorems in the above equations
ln8=6λ-\ln 8=-6\lambda
ln23=6λ\Rightarrow \ln {{2}^{3}}=6\lambda
Using the logarithmic theorem lnab=blna\ln {{a}^{b}}=b\ln a in the above equation, we get
3ln2=6λ3\ln 2=6\lambda
λ=ln22\Rightarrow\lambda =\dfrac{\ln 2}{2}..... (1)(1)
Now, at time t=t1t=t_1 , the number of disintegrated nuclei is N=N05N=\dfrac{{{N}_{0}}}{5} . Substituting all the given values in Law of disintegration
N05=N0eλt\dfrac{{{N}_{0}}}{5}={{N}_{0}}{{e}^{-\lambda t}}
15=eλt\Rightarrow \dfrac{1}{5}={{e}^{-\lambda t}}

Applying natural log on both sides,
ln(15)=lneλt\ln \left( \dfrac{1}{5} \right)=\ln {{e}^{-\lambda t}}
Applying logarithmic theorems,
ln5=ln22t1-\ln 5=-\dfrac{\ln 2}{2}{{t}_{1}}
t1=2ln5ln2\Rightarrow {{t}_{1}}=\dfrac{2\ln 5}{\ln 2}…… (2)(2)
From the logarithmic theorem lnalnb=lnba\dfrac{\ln a}{\ln b}={{\ln }_{b}}a , the above equation can be written as
t1=2ln25\therefore {{t}_{1}}=2{{\ln }_{2}}5
Now, for the disintegration curve of BB , at time t=t2t=t_2 , the given number of disintegrated nuclei is N=9N010N=\dfrac{9{{N}_{0}}}{10}
Hence, the number of disintegrated nuclei is N=N09N010=N010N={{N}_{0}}-\dfrac{9{{N}_{0}}}{10}=\dfrac{{{N}_{0}}}{10}
Substituting the values in the law of disintegration,
N010=N0eλt\dfrac{{{N}_{0}}}{10}={{N}_{0}}{{e}^{-\lambda t}}
110=eλt\Rightarrow \dfrac{1}{10}={{e}^{-\lambda t}}

Applying natural log on both sides,
ln(110)=lneλt\therefore \ln \left( \dfrac{1}{10} \right)=\ln {{e}^{-\lambda t}}
Applying logarithmic theorems,
ln10=ln22t2-\ln 10=-\dfrac{\ln 2}{2}{{t}_{2}}
t2=2ln10ln2\therefore {{t}_{2}}=\dfrac{2\ln 10}{\ln 2}...…… (2)(2)
From the logarithmic theorem lnab=blna\ln {{a}^{b}}=b\ln a and lnalnb=lnba\dfrac{\ln a}{\ln b}={{\ln }_{b}}a , the above equation can be written as
t1=ln2100{{t}_{1}}={{\ln }_{2}}100
Now, taking the difference of the equation (1)(1) and (2)(2) ,
t2t1=2ln10ln22ln5ln2{{t}_{2}}-{{t}_{1}}=\dfrac{2\ln 10}{\ln 2}-\dfrac{2\ln 5}{\ln 2}
t2t1=2ln(5×2)ln22ln5ln2\Rightarrow{{t}_{2}}-{{t}_{1}}=\dfrac{2\ln (5\times 2)}{\ln 2}-\dfrac{2\ln 5}{\ln 2}
From the logarithmic theorem ln(ab)=lna+lnb\ln (ab)=\ln a+\ln b ,
t2t1=2ln5+2ln22ln5ln2{{t}_{2}}-{{t}_{1}}=\dfrac{2\ln 5+2\ln 2-2\ln 5}{\ln 2}
t2t1=2sec\therefore {{t}_{2}}-{{t}_{1}}=2\sec

Hence, the correct answers are option B , C , D.

Note: Here, to avoid the use of log tables and approximation values, we have the logarithmic values as it is till the end. We can find their values from natural log tables in the initial step also. Also for the nuclei BB , the graph shows the disintegrated or the number of new nuclei formed after disintegration, while the law of disintegration required the disintegrated nuclei. Hence, we must remember to take the disintegrated nuclei which can be calculated by subtracting the value from the total number of nuclei.