Solveeit Logo

Question

Question: in a quasistatic process, an ideal monoatomic gas is applied heat in sch a way that volincreases an ...

in a quasistatic process, an ideal monoatomic gas is applied heat in sch a way that volincreases an freq of collisions of atoms remains constant if molar specific heat of gas is nR find n

Answer

2

Explanation

Solution

Solution:

  1. Collision Frequency Constraint:

For an ideal gas, the collision frequency is proportional to the product of the number density and the average speed:

f1VTf \propto \frac{1}{V}\sqrt{T}

Keeping ff constant implies

TV=constantTV2.\frac{\sqrt{T}}{V} = \text{constant} \quad \Longrightarrow \quad T \propto V^2.

Write

T=aV2with a constant.T = aV^2 \quad \text{with } a \text{ constant.}
  1. First Law of Thermodynamics:

For one mole of a monatomic ideal gas, the first law is

dQ=dU+PdV,dQ = dU + PdV,

and

dU=32RdT,P=RTV.dU = \frac{3}{2}R\,dT, \quad P = \frac{RT}{V}.

Thus,

dQ=32RdT+RTVdV.dQ = \frac{3}{2}R\,dT + \frac{RT}{V}\,dV.
  1. Relating dTdT and dVdV:

Since T=aV2T = aV^2, differentiating gives:

dT=2aVdV.dT = 2aV\,dV.

Also, note that

TV=aV.\frac{T}{V} = aV.
  1. Substitute in the First Law:
dQ=32R(2aVdV)+R(aV)dV=3RaVdV+RaVdV=4RaVdV.dQ = \frac{3}{2}R (2aV\,dV) + R(aV) \,dV = 3RaV\,dV + RaV\,dV = 4RaV\,dV.

Express dQdQ in terms of dTdT:

dT=2aVdVdV=dT2aV.dT = 2aV\,dV \quad \Longrightarrow \quad dV = \frac{dT}{2aV}.

Substitute:

dQ=4RaVdT2aV=2RdT.dQ = 4RaV \cdot \frac{dT}{2aV} = 2R\,dT.
  1. Determine the Molar Specific Heat:

By definition, for this process,

dQ=CdTwith C=nR.dQ = C\,dT \quad \text{with } C = nR.

Comparing, we have:

nR=2Rn=2.nR = 2R \quad \Longrightarrow \quad n = 2.

Explanation (Minimal):

  • Collision frequency constant implies T/V\sqrt{T}/V is constant TV2\Rightarrow T \propto V^2.
  • Use T=aV2T = aV^2 to relate dTdT and dVdV.
  • Apply first law: dQ=32RdT+(RT/V)dVdQ = \tfrac{3}{2}RdT + (RT/V)dV.
  • Substitute dT=2aVdVdT = 2aV\,dV and simplify to get dQ=2RdTdQ = 2R\,dT.
  • Thus, molar specific heat C=2RC = 2R i.e. n=2n = 2.