Solveeit Logo

Question

Question: In a quark model of elementary particles, a neutron is made of one up quark of charge \(\frac{2}{3}e...

In a quark model of elementary particles, a neutron is made of one up quark of charge 23e\frac{2}{3}eand two down quark of charges (13e)\left( - \frac{1}{3}e \right). If they have a triangle configuration with side length of order of 101510^{- 15}m. The electrostatic potential energy of neutron in Me V is

A

7.68

B

-5.21

C

-0.48

D

9.34

Answer

-0.48

Explanation

Solution

: Figure shows the quark model of neutron Here, r=1015mr = 10^{- 15}m Potential energy of neutron is.

U=14πε0r[qdqd+quqd+quqU = \frac{1}{4\pi\varepsilon_{0}r}\lbrack q_{d}q_{d} + q_{u}q_{d} + q_{u}q

=9×1091015[(e3)(e3)+(2e3)(e3)+(2e3)(e3)]= \frac{9 \times 10^{9}}{10^{- 15}}\left\lbrack \left( \frac{- e}{3} \right)\left( \frac{- e}{3} \right) + \left( \frac{2e}{3} \right)\left( \frac{- e}{3} \right) + \left( \frac{2e}{3} \right)\left( \frac{- e}{3} \right) \right\rbrack

=9×1091015e2[1949]=9×1091015(1.6×1019)2(13)= \frac{9 \times 10^{9}}{10^{- 15}}e^{2}\left\lbrack \frac{1}{9} - \frac{4}{9} \right\rbrack = \frac{9 \times 10^{9}}{10^{- 15}}(1.6 \times 10^{- 19})^{2}\left( - \frac{1}{3} \right)

=7.68×1014J=4.8×105eV= - 7.68 \times 10^{- 14}J = - 4.8 \times 10^{5}eV

=0.48MeV= - 0.48MeV