Solveeit Logo

Question

Question: In a photoemissive cell with exciting wavelength\(\lambda\), the fastest electron has speed *v*. If ...

In a photoemissive cell with exciting wavelengthλ\lambda, the fastest electron has speed v. If the exciting wavelength is changed to 3λ/43\lambda/4, the speed of the fastest emitted electron will be

A

v(3/4)1/2v(3/4)^{1/2}

B

v(4/3)1/2v(4/3)^{1/2}

C

Less then v(4/3)1/2v(4/3)^{1/2}

D

Greater then v(4/3)1/2v(4/3)^{1/2}

Answer

Greater then v(4/3)1/2v(4/3)^{1/2}

Explanation

Solution

From E=W0+12mvmax2E = W_{0} + \frac{1}{2}mv_{\max}^{2}

v2Em2W0mmax{v\sqrt{\frac{2E}{m} - \frac{2W_{0}}{m}}}_{\max} (where E=hcλE = \frac{hc}{\lambda})

If wavelength of incident light charges from λ to 3λ4\frac{3\lambda}{4} (decreases)

Let energy of incident light charges from E to EE' and speed of fastest electron changes from v to v ′ then

v=2Em2W0mv = \sqrt{\frac{2E}{m} - \frac{2W_{0}}{m}} …..(i)

and v=2Em2W0mv' = \sqrt{\frac{2E'}{m} - \frac{2W_{0}}{m}} …….(ii)

As E1λE \propto \frac{1}{\lambda}

E=43EE' = \frac{4}{3}E hence v=2(43E)m2W0mv' = \sqrt{\frac{2\left( \frac{4}{3}E \right)}{m} - \frac{2W_{0}}{m}}

v=(43)1/22Em2W0m(43)1/2v' = \left( \frac{4}{3} \right)^{1/2}\sqrt{\frac{2E}{m} - \frac{2W_{0}}{m\left( \frac{4}{3} \right)^{1/2}}}

v=(43)1/2v' = \left( \frac{4}{3} \right)^{1/2} X=2Em2W0m(43)1/2>vX = \sqrt{\frac{2E}{m} - \frac{2W_{0}}{m\left( \frac{4}{3} \right)^{1/2}}} > v

so v>(43)1/2vv' > \left( \frac{4}{3} \right)^{1/2}v.