Solveeit Logo

Question

Physics Question on Electronic devices

In a p-type semiconductor, the acceptor level is situated 50 meV above the valence band. The maximum wavelength of light required to produce a hole will be:

A

24.8 \times 10^{-5} \, \text{m} \\\

B

0.248 \times 10^{-5} \, \text{m} \\\

C

2.48 \times 10^{-5} \, \text{m} \\\

D

248×105m248 \times 10^{-5} \, \text{m}

Answer

2.48 \times 10^{-5} \, \text{m} \\\

Explanation

Solution

 The energy required to produce a hole is 50meV=50×103eV=8.0×1021J.\text{ The energy required to produce a hole is } 50 \, \text{meV} = 50 \times 10^{-3} \, \text{eV} = 8.0 \times 10^{-21} \, \text{J}.\\\\
The wavelength corresponding to this energy is given by:\text{The wavelength corresponding to this energy is given by:}
E=hcλ    λ=hcEE = \frac{hc}{\lambda} \implies \lambda = \frac{hc}{E}

Substitute h=6.626×1034J.s,c=3×108m/s, and E=8.0×1021J:\text{Substitute } h = 6.626 \times 10^{-34} \, \text{J.s}, \, c = 3 \times 10^8 \, \text{m/s}, \text{ and } E = 8.0 \times 10^{-21} \, \text{J}:

λ=6.626×1034×3×1088.0×1021=2.48×105m\lambda = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{8.0 \times 10^{-21}} = 2.48 \times 10^{-5} \, \text{m}