Solveeit Logo

Question

Physics Question on Nuclear physics

In a nuclear reactor the activity of a radioactive substance is 2000/s2000 / s. If the mean life of the products is 5050 minutes, then in the steady power generation, the number of radio nuclides is

A

12×10512 \times 10^5

B

60×10560 \times 10^5

C

90×10590 \times 10^5

D

15×10515 \times 10^5

Answer

60×10560 \times 10^5

Explanation

Solution

Given,
nuclcar rcactor the activity of a radioactivc substance,
dNdt=2000/s\frac{d N}{d t}=2000 / s
and mean-life of the products,
τ=50min\tau =50\, min
=50×60sec=50 \times 60 \,sec
Now, the mean-life of the radioactive substance is inversely proportional to disintegration constant λ\lambda i.e.,
τ=1λ\tau=\frac{1}{\lambda}
λ=1τ=150×60\Rightarrow \lambda=\frac{1}{\tau}=\frac{1}{50 \times 60} per second
\therefore The rate of decay is proportional to the number of radio nuclides is given as
dNdtN\left|\frac{d N}{d t}\right| \propto N
dNdt=λN\frac{d N}{d t} \mid=\lambda\, N
2000=150×60×N\Rightarrow 2000=\frac{1}{50 \times 60} \times N
Where, λ\lambda is a disintegration constant.
Putting the given values, we get
N=2000×50×60N=2000 \times 50 \times 60
N=60×105\Rightarrow N=60 \times 10^{5}
Hence, the number of nuclides is 60×10560 \times 10^{5}