Solveeit Logo

Question

Question: In a non-magnetic medium, the EM-wave equation is given as $\vec{E} = [30 \cos{(10^9t - 8x)}\hat{j} ...

In a non-magnetic medium, the EM-wave equation is given as E=[30cos(109t8x)j^+40sin(109t8x)k^]V/m\vec{E} = [30 \cos{(10^9t - 8x)}\hat{j} + 40 \sin{(10^9t - 8x)}\hat{k}] V/m

A

The value of dielectric constant is 8.

B

The value of dielectric constant is 14425\frac{144}{25}

C

B=[24cos(109t8x)k^32sin(109t8x)j^]×108T\vec{B} = [24 \cos{(10^9t - 8x)}\hat{k} - 32 \sin{(10^9t - 8x)}\hat{j}] \times 10^{-8}T

D

B=[24sin(109t8x)k^+32cos(109t8x)j^]×108T\vec{B} = [24 \sin{(10^9t - 8x)}\hat{k} + 32 \cos{(10^9t - 8x)}\hat{j}] \times 10^{-8}T

Answer

B and C

Explanation

Solution

The problem deals with an electromagnetic wave propagating in a non-magnetic medium. We are given the electric field vector and need to find the dielectric constant of the medium and the magnetic field vector.

1. Determine the wave parameters: The given electric field equation is E=[30cos(109t8x)j^+40sin(109t8x)k^]V/m\vec{E} = [30 \cos{(10^9t - 8x)}\hat{j} + 40 \sin{(10^9t - 8x)}\hat{k}] V/m. Comparing this with the general form of an electromagnetic wave E=E0cos(ωtkx)E = E_0 \cos(\omega t - kx) or E=E0sin(ωtkx)E = E_0 \sin(\omega t - kx), we can identify:

  • Angular frequency, ω=109\omega = 10^9 rad/s
  • Wave number, k=8k = 8 rad/m The wave propagates in the +x direction.

2. Calculate the speed of the wave in the medium: The speed of an electromagnetic wave in a medium is given by v=ωkv = \frac{\omega}{k}. v=109 rad/s8 rad/m=0.125×109 m/s=1.25×108 m/sv = \frac{10^9 \text{ rad/s}}{8 \text{ rad/m}} = 0.125 \times 10^9 \text{ m/s} = 1.25 \times 10^8 \text{ m/s}.

3. Calculate the dielectric constant (K): For a non-magnetic medium, the permeability is approximately that of free space, i.e., μ=μ0\mu = \mu_0. The speed of light in a medium is also given by v=1μϵv = \frac{1}{\sqrt{\mu\epsilon}}, where ϵ\epsilon is the permittivity of the medium. We know that ϵ=Kϵ0\epsilon = K \epsilon_0, where KK is the dielectric constant (relative permittivity) and ϵ0\epsilon_0 is the permittivity of free space. So, v=1μ0Kϵ0v = \frac{1}{\sqrt{\mu_0 K \epsilon_0}}. We also know that the speed of light in vacuum is c=1μ0ϵ0=3×108 m/sc = \frac{1}{\sqrt{\mu_0 \epsilon_0}} = 3 \times 10^8 \text{ m/s}. Therefore, v=cKv = \frac{c}{\sqrt{K}}. Rearranging for KK: K=(cv)2K = \left(\frac{c}{v}\right)^2 Substitute the values of cc and vv: K=(3×108 m/s1.25×108 m/s)2=(31.25)2=(35/4)2=(125)2=14425K = \left(\frac{3 \times 10^8 \text{ m/s}}{1.25 \times 10^8 \text{ m/s}}\right)^2 = \left(\frac{3}{1.25}\right)^2 = \left(\frac{3}{5/4}\right)^2 = \left(\frac{12}{5}\right)^2 = \frac{144}{25}. As a decimal, K=5.76K = 5.76.

4. Calculate the magnetic field vector (B\vec{B}): For a plane electromagnetic wave, the electric field E\vec{E}, magnetic field B\vec{B}, and the direction of propagation k^prop\hat{k}_{prop} are mutually perpendicular. Their relationship is given by B=1v(k^prop×E)\vec{B} = \frac{1}{v} (\hat{k}_{prop} \times \vec{E}). Here, the propagation direction is k^prop=x^\hat{k}_{prop} = \hat{x}. E=[30cos(109t8x)j^+40sin(109t8x)k^]\vec{E} = [30 \cos{(10^9t - 8x)}\hat{j} + 40 \sin{(10^9t - 8x)}\hat{k}] Now, substitute these into the formula for B\vec{B}: B=11.25×108(x^×[30cos(109t8x)j^+40sin(109t8x)k^])\vec{B} = \frac{1}{1.25 \times 10^8} \left( \hat{x} \times [30 \cos{(10^9t - 8x)}\hat{j} + 40 \sin{(10^9t - 8x)}\hat{k}] \right) B=11.25×108(30cos(109t8x)(x^×j^)+40sin(109t8x)(x^×k^))\vec{B} = \frac{1}{1.25 \times 10^8} \left( 30 \cos{(10^9t - 8x)}(\hat{x} \times \hat{j}) + 40 \sin{(10^9t - 8x)}(\hat{x} \times \hat{k}) \right) Using the cross product identities: x^×j^=k^\hat{x} \times \hat{j} = \hat{k} and x^×k^=j^\hat{x} \times \hat{k} = -\hat{j}. B=11.25×108(30cos(109t8x)k^40sin(109t8x)j^)\vec{B} = \frac{1}{1.25 \times 10^8} \left( 30 \cos{(10^9t - 8x)}\hat{k} - 40 \sin{(10^9t - 8x)}\hat{j} \right) Calculate the pre-factor: 11.25×108=15/4×108=45×108=0.8×108\frac{1}{1.25 \times 10^8} = \frac{1}{5/4 \times 10^8} = \frac{4}{5} \times 10^{-8} = 0.8 \times 10^{-8}. B=0.8×108[30cos(109t8x)k^40sin(109t8x)j^]\vec{B} = 0.8 \times 10^{-8} \left[ 30 \cos{(10^9t - 8x)}\hat{k} - 40 \sin{(10^9t - 8x)}\hat{j} \right] B=[(0.8×30)cos(109t8x)k^(0.8×40)sin(109t8x)j^]×108\vec{B} = \left[ (0.8 \times 30) \cos{(10^9t - 8x)}\hat{k} - (0.8 \times 40) \sin{(10^9t - 8x)}\hat{j} \right] \times 10^{-8} B=[24cos(109t8x)k^32sin(109t8x)j^]×108 T\vec{B} = \left[ 24 \cos{(10^9t - 8x)}\hat{k} - 32 \sin{(10^9t - 8x)}\hat{j} \right] \times 10^{-8} \text{ T}.