Solveeit Logo

Question

Physics Question on Meter Bridge

In a metre-bridge, when a resistance of 2Ω2 \, \Omega is in the left gap and the unknown resistance in the right gap, the balance length is found to be 40 cm. On shunting the unknown resistance with 2Ω2 \, \Omega, the balance length changes by:

A

22.5 cm

B

20 cm

C

62.5 cm

D

65 cm

Answer

22.5 cm

Explanation

Solution

Given: - Resistance in the left gap (RR) = 2Ω2 \, \Omega - Balance length (L1L_1) = 40cm40 \, \text{cm} - Shunting resistance (RsR_s) = 2Ω2 \, \Omega

Step 1: Calculating the Value of the Unknown Resistance (XX)

The balance condition of the Wheatstone bridge is given by:

RX=L1100L1\frac{R}{X} = \frac{L_1}{100 - L_1}

Substituting the given values:

2X=4060\frac{2}{X} = \frac{40}{60} X=2×6040X = \frac{2 \times 60}{40} X=3ΩX = 3 \, \Omega

Step 2: Calculating the Equivalent Resistance when Shunted

When the unknown resistance XX is shunted with Rs=2ΩR_s = 2 \, \Omega, the equivalent resistance (XshX_{\text{sh}}) is given by:

1Xsh=1X+1Rs\frac{1}{X_{\text{sh}}} = \frac{1}{X} + \frac{1}{R_s}

Substituting the values:

1Xsh=13+12\frac{1}{X_{\text{sh}}} = \frac{1}{3} + \frac{1}{2} 1Xsh=2+36=56\frac{1}{X_{\text{sh}}} = \frac{2 + 3}{6} = \frac{5}{6} Xsh=65ΩX_{\text{sh}} = \frac{6}{5} \, \Omega

Step 3: Calculating the New Balance Length (L2L_2)

Using the balance condition again:

RXsh=L2100L2\frac{R}{X_{\text{sh}}} = \frac{L_2}{100 - L_2}

Substituting the values:

265=L2100L2\frac{2}{\frac{6}{5}} = \frac{L_2}{100 - L_2} 2×56=L2100L2\frac{2 \times 5}{6} = \frac{L_2}{100 - L_2} 53=L2100L2\frac{5}{3} = \frac{L_2}{100 - L_2}

Cross-multiplying:

5(100L2)=3L25(100 - L_2) = 3L_2 5005L2=3L2500 - 5L_2 = 3L_2 500=8L2500 = 8L_2 L2=5008=62.5cmL_2 = \frac{500}{8} = 62.5 \, \text{cm}

Step 4: Change in Balance Length

The change in balance length is given by:

ΔL=L2L1\Delta L = L_2 - L_1

Substituting the values:

ΔL=62.5cm40cm\Delta L = 62.5 \, \text{cm} - 40 \, \text{cm} ΔL=22.5cm\Delta L = 22.5 \, \text{cm}

Conclusion:

The balance length changes by 22.5cm22.5 \, \text{cm}.