Question
Question: In a medium ware broadcast radio can be tuned in frequency range \[300kHz\] to \[1200kHz\] in circui...
In a medium ware broadcast radio can be tuned in frequency range 300kHz to 1200kHz in circuit of this radio effective inductance is 300μH, what range of variable capacitor?
Solution
When L or C is present in an ac circuit, energy is required to build up a magnetic field around L or electric field in C. This energy comes from the source. However, power consumed in L or Cis zero because all the power received from the source in a quarter cycle is returned to the source in the next quarter cycle.
Formula used:
The frequency of LC circuit is,
f=2πLC1
Where, L is the inductance of an inductor (H)
C is the capacitance of the capacitor (F)
Complete step by step answer:
For tuning the radio, the frequency of the LC circuit must be equal to the frequency of the radio wave. The frequency of LC circuit is,
f=2πLC1
……………….(1)
Where, L is the inductance of an inductor (H)
C is the capacitance of the capacitor(F)
Squaring on both the equation (1) we get
f2=4π2LC1
The above equation can also be written as,
C=4π2f2L1 …………………….(2)
Given: Effective inductance,
⇒L=300μH
We can convert the value of μHinto H, we get
⇒300×10−6H
For frequency,
⇒f1=300kHz
We can convert the kHz into Hz, we get
⇒300×103Hz
Value of capacitance will be,
Consider equation (2) we get
⇒C1=4π2f12L1
We can substitute the given values in the equations, we get,
⇒C1=4×3.142×(300×103)2×300×10−61
Solving the above equation,
⇒C1=1.0648×1091
By using division we get,
⇒C1=0.9147×10−9
⇒914×10−12F
We can convert the Finto pF, we get
∴C1=914pF
Similarly, for frequency
⇒f2=1200kHz
We can convert the kHz into Hz, we get
⇒1200×103Hz
The value of capacitance will be,
Consider equation (2) we get
⇒C2=4π2f22L1
We can substitute the values in the given equation, we get
⇒C2=4×3.142×(1200×103)2×300×10−61
Solving the above equation,
⇒C2=1.7037×10101
We can use division to simplify the given equations we get,
⇒C2=0.5869×10−10
⇒58.6×10−12F
We can convert the Finto pF, we get
∴C2=58.6pF
Therefore, the variable capacitor should have a range of58.6pFto 914pF.
Additional information:
When a charged capacitor is connected to an inductor, the charge oscillates from one plate of the capacitor to the other through the inductor. This results in the production of electrical oscillations called electromagnetic oscillations. The physical reason is that energy moves back and forth between the magnetic field of the inductor and the electric field of the capacitor. Therefore, when a charged capacitor C is allowed to discharge through an inductor L, electrical oscillations are produced. These oscillations are called LC oscillations.
Note:
-If the resistance of the circuit is zero, there is no loss of energy and the oscillations produced will be of constant amplitude. Such oscillations are called un-damped oscillation.
-If there is a loss of energy the oscillations produced will be decreasing their amplitude. Such oscillations are called damped oscillation.