Question
Question: In a \(b ^ { 2 } + c ^ { 2 } = 3 a ^ { 2 }\), then \(\cot B + \cot C - \cot A =\)....
In a b2+c2=3a2, then cotB+cotC−cotA=.
A
1
B
4Δab
C
0
D
4Δac
Answer
0
Explanation
Solution
cotB+cotC−cotA=sinBcosB+sinCcosC−cotA
=sinBsinCsinCcosB+cosCsinB−cotA =sinBsinCsin(B+C)−sinAcosA
=sinAsinBsinCsin2A−sinBsinCcosA=k(abc)a2−bccosA
SinceasinA=bsinB=csinC=k (say)
and cosA=2bcb2+c2−a2 =(abc)ka2−bc2bc(b2+c2−a2)
=abck(a2−a2)=0,{ As 2b2+c2−a2=23a2−a2=22a2=a2}