Solveeit Logo

Question

Question: In a \(\triangle A B C\) \(\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}\) and \(a = 2,\) t...

In a ABC\triangle A B C cosAa=cosBb=cosCc\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c} and a=2,a = 2, then the area of a triangle is

A

1

B

2

C

32\frac{\sqrt{3}}{2}

D

3\sqrt{3}

Answer

3\sqrt{3}

Explanation

Solution

By sine rule, tanA=tanB=tanC\tan A = \tan B = \tan C; \therefore Triangle is equilateral .

Hence, Δ=12.a.a.sin60o=12.2.2.32=3\Delta = \frac{1}{2}.a.a.\sin 60^{o} = \frac{1}{2}.2.2.\frac{\sqrt{3}}{2} = \sqrt{3}.