Solveeit Logo

Question

Question: In a \(\triangle A B C\), if \(3 a = b + c\),then the value of \(\cot \frac { B } { 2 } \cot \frac {...

In a ABC\triangle A B C, if 3a=b+c3 a = b + c,then the value of cotB2cotC2\cot \frac { B } { 2 } \cot \frac { C } { 2 } is

A

1

B

2

C

3\sqrt { 3 }

D

2\sqrt { 2 }

Answer

2

Explanation

Solution

cotB2cotC2=s(sb)(sa)(sc)s(sc)(sa)(sb)=ssa\cot \frac { B } { 2 } \cdot \cot \frac { C } { 2 } = \sqrt { \frac { s ( s - b ) } { ( s - a ) ( s - c ) } } \cdot \sqrt { \frac { s ( s - c ) } { ( s - a ) ( s - b ) } } = \frac { s } { s - a }

Given 3a=b+ca+b+c=4a3 a = b + c \Rightarrow a + b + c = 4 a

⇒ ∴ cotB2cotC2=2aa=2\cot \frac { B } { 2 } \cdot \cot \frac { C } { 2 } = \frac { 2 a } { a } = 2.