Solveeit Logo

Question

Question: In a \(\triangle A B C\) \(a = 2 b\)and\(| A - B | = \frac { \pi } { 3 }\). The measure of \(\angle ...

In a ABC\triangle A B C a=2ba = 2 bandAB=π3| A - B | = \frac { \pi } { 3 }. The measure of C\angle C is

A

π4\frac { \pi } { 4 }

B

π3\frac { \pi } { 3 }

C

π6\frac { \pi } { 6 }

D

None of these

Answer

π3\frac { \pi } { 3 }

Explanation

Solution

Clearly, A>BA > B (a>b)( \because a > b )

Now tanAB2=aba+bcotC2\tan \frac { A - B } { 2 } = \frac { a - b } { a + b } \cot \frac { C } { 2 }tan30=13cotC2\tan 30 ^ { \circ } = \frac { 1 } { 3 } \cot \frac { C } { 2 }

\therefore 3=cotC2\sqrt { 3 } = \cot \frac { C } { 2 } or C2=π6\frac { C } { 2 } = \frac { \pi } { 6 }C=π3C = \frac { \pi } { 3 } .