Solveeit Logo

Question

Question: In a \(\triangle A B C , \frac { \cos C + \cos A } { c + a } + \frac { \cos B } { b }\) is equal to...

In a ABC,cosC+cosAc+a+cosBb\triangle A B C , \frac { \cos C + \cos A } { c + a } + \frac { \cos B } { b } is equal to

A

1a\frac { 1 } { a }

B

1b\frac { 1 } { b }

C

1c\frac { 1 } { c }

D

c+ab\frac { c + a } { b }

Answer

1b\frac { 1 } { b }

Explanation

Solution

cosC+cosAc+a+cosBb\frac { \cos C + \cos A } { c + a } + \frac { \cos B } { b } = (bcosC+bcosA)+(ccosB+acosB)b(c+a)\frac { ( b \cos C + b \cos A ) + ( c \cos B + a \cos B ) } { b ( c + a ) }

=(bcosC+ccosB)+(bcosA+acosB)b(c+a)\frac { ( b \cos C + c \cos B ) + ( b \cos A + a \cos B ) } { b ( c + a ) }=a+cb(c+a)\frac { a + c } { b ( c + a ) }

(Using projection formulae) = 1b\frac { 1 } { b }.